Monday, July 20th 2015
TSMC to Commence 10 nm Volume Production by Q4-2016
Semiconductor foundry TSMC assured its clients that the company will be ready with a 10 nanometer manufacturing node for volume production, by the 4th quarter of 2016. Company president and joint-CEO Mark Liu made this announcement during the company's recent Q2-2015 earnings call. "The recent progress of our 10 nanometer technology development is very encouraging and on track with our plan," he said. With volume production of chips commencing in Q4, some of the first products based on them should begin appearing in early-2017. "We ramp up 10 nm in the Q4 2016 next year, but the real product shipment will be in Q1 2017," said C.C. Wei, co-CEO.
Source:
Kitguru
24 Comments on TSMC to Commence 10 nm Volume Production by Q4-2016
My query: What comes first: 10nmHP (or simply being able to scale the process to larger or more power-hungry applications) or Intel's full transition (including HEDT) to 10nm? This is not just wrt to TSMC, but also Samsung/GF. While products based on it probably won't appear until 2018 (read: the infamous Volta etc), and granted surely Intel (with it's shorter lead time) will have products by then...It would be an interesting thing if there is ANY overlap, as in theory (read: paper specs based on gate sizes and sram tests) those processes should trump Intel's 14nm. If nothing else, exciting purely on the fact the gap, while perhaps not disappearing, is certainly shortening very quickly. It shall be even more exciting if Samsung/TSMC partners do indeed embrace more 3D designs, where-as Intel seems much more quiet in that regard.
I truly think Samsung (or essentially whatever ties that bind the loose CPA) is the wild card. While their 10nm improvements and ramp schedules could go either way, I really am curious of the plan for 7nm. While I'm not one for conspiracy theories (ok, I guess I am), I have to wonder how deep the rabbit hole between them and GF goes. You know, the same company that bought IBM's chip division which recently had a gigantic breakthrough regarding 7nm...
AFAIA, the 7nm IBM node is FD-SOI. IBM are partnering with ST-Micro, and SOITEK ( who I think are still the biggest (only?) suppliers of SOI process wafers). No doubt, ST-Micro will offer licences - and GloFo has already licenced ST-Micro's 14nm FD-SOI (which GloFo calls 22FDX), although they had previously licenced STM's 20nm - which has since been shelved. Samsung and STM are pretty close, so it wouldn't surprise to see GloFo weigh in.
These guys haven't shown yet a single working mass produced 16-nm product, it's extremely annoying that they open their big mouths with false promises.
Can you imagine how far is that so called """16""" nm from anything atom level.
Yes, I would guess there should be pm technologies (because marketing decides :laugh: ) sooner or later.
Even intel, with its engineering and monetary superiority, is having issues with 14nm. broadwell was delayed, and full wattage parts delayed even further. 10nm cannonlake is also delayed.
Do not expect 10 nm products even in 2017. More likely 2018-2019.
They can manufacture something small on 10nm in 2017.
*Arctic Islands can be a GloFo deal, not TSMC, this is TBC.
2018 *may* see the start of 7nm mobile chips, essentially keeping up with Moore's Law (with or without Intel) as IBM's breakthrough may spearhead that process, but it would be insane to speculate that far out. We also don't know if Intel will play catch up at 7nm, and/or how successful TSMC will be in their migration to their 7nm. It could be a quick and successful shrink assuming they have tested some aspects at 10nm and they migrate well....It could also be a bloody disaster like 40 (and 20)nm.
they pick something from the reaserch-stack and put it into mainstream production.
It will be expensive at first but it will become cheaper as more and more companies jump into it.
I bet that there are 10 or more alternatives to silicon out there, not to mention the silicon photonics technology.
I think that the physical limit of the silicon is less than 1 nm, which is IIRC 7 atoms wide, thus making 0.14nm a possible goal (?!).
I believe also that there is too much attention on the lithographic node of each chip. intel proved that an immature node, e.g. 28 or 22 nm is impossible to give you the benefits you expect in comparison to a mature node, e.g. 40nm.
At 40nm z196 was amazing, so even if the progress stops at 10nm or 7nm there are years upon years of r&d to take full advantage of that node.
To conclude, there are so f'ing many things to consider when making a cpu, that the lithographic node is only a fraction of what you actually should consider... but that's what makes (mostly) people consider when buying a cpu.
Smaller process == smaller die size for the same chip
smaller die size == more chips on the same wafer
more chips on the same wafer == [much] lower manufacturing costs
lower manufacturing costs == higher market margin for chips they sell
higher market margin == MONEY!!!!!!!
this applies regardless if the company owns and uses their own fabs (e.g. Intel) or is a fabless one (e.g. AMD, Nvidia)
P.S. that said, AMD should move from 28nm for their CPUs, FFS B(