News Posts matching #GH200

Return to Keyword Browsing

NVIDIA Grace Hopper Superchip Powers 40+ AI Supercomputers

Dozens of new supercomputers for scientific computing will soon hop online, powered by NVIDIA's breakthrough GH200 Grace Hopper Superchip for giant-scale AI and high performance computing. The NVIDIA GH200 enables scientists and researchers to tackle the world's most challenging problems by accelerating complex AI and HPC applications running terabytes of data.

At the SC23 supercomputing show, NVIDIA today announced that the superchip is coming to more systems worldwide, including from Dell Technologies, Eviden, Hewlett Packard Enterprise (HPE), Lenovo, QCT and Supermicro. Bringing together the Arm-based NVIDIA Grace CPU and Hopper GPU architectures using NVIDIA NVLink-C2C interconnect technology, GH200 also serves as the engine behind scientific supercomputing centers across the globe. Combined, these GH200-powered centers represent some 200 exaflops of AI performance to drive scientific innovation.

Supermicro Starts Shipments of NVIDIA GH200 Grace Hopper Superchip-Based Servers

Supermicro, Inc., a Total IT Solution manufacturer for AI, Cloud, Storage, and 5G/Edge, is announcing one of the industry's broadest portfolios of new GPU systems based on the NVIDIA reference architecture, featuring the latest NVIDIA GH200 Grace Hopper and NVIDIA Grace CPU Superchip. The new modular architecture is designed to standardize AI infrastructure and accelerated computing in compact 1U and 2U form factors while providing ultimate flexibility and expansion ability for current and future GPUs, DPUs, and CPUs. Supermicro's advanced liquid-cooling technology enables very high-density configurations, such as a 1U 2-node configuration with 2 NVIDIA GH200 Grace Hopper Superchips integrated with a high-speed interconnect. Supermicro can deliver thousands of rack-scale AI servers per month from facilities worldwide and ensures Plug-and-Play compatibility.

"Supermicro is a recognized leader in driving today's AI revolution, transforming data centers to deliver the promise of AI to many workloads," said Charles Liang, president and CEO of Supermicro. "It is crucial for us to bring systems that are highly modular, scalable, and universal for rapidly evolving AI technologies. Supermicro's NVIDIA MGX-based solutions show that our building-block strategy enables us to bring the latest systems to market quickly and are the most workload-optimized in the industry. By collaborating with NVIDIA, we are helping accelerate time to market for enterprises to develop new AI-enabled applications, simplifying deployment and reducing environmental impact. The range of new servers incorporates the latest industry technology optimized for AI, including NVIDIA GH200 Grace Hopper Superchips, BlueField, and PCIe 5.0 EDSFF slots."

NVIDIA GH200 Superchip Aces MLPerf Inference Benchmarks

In its debut on the MLPerf industry benchmarks, the NVIDIA GH200 Grace Hopper Superchip ran all data center inference tests, extending the leading performance of NVIDIA H100 Tensor Core GPUs. The overall results showed the exceptional performance and versatility of the NVIDIA AI platform from the cloud to the network's edge. Separately, NVIDIA announced inference software that will give users leaps in performance, energy efficiency and total cost of ownership.

GH200 Superchips Shine in MLPerf
The GH200 links a Hopper GPU with a Grace CPU in one superchip. The combination provides more memory, bandwidth and the ability to automatically shift power between the CPU and GPU to optimize performance. Separately, NVIDIA HGX H100 systems that pack eight H100 GPUs delivered the highest throughput on every MLPerf Inference test in this round. Grace Hopper Superchips and H100 GPUs led across all MLPerf's data center tests, including inference for computer vision, speech recognition and medical imaging, in addition to the more demanding use cases of recommendation systems and the large language models (LLMs) used in generative AI.

Tata Partners With NVIDIA to Build Large-Scale AI Infrastructure

NVIDIA today announced an extensive collaboration with Tata Group to deliver AI computing infrastructure and platforms for developing AI solutions. The collaboration will bring state-of-the-art AI capabilities within reach to thousands of organizations, businesses and AI researchers, and hundreds of startups in India. The companies will work together to build an AI supercomputer powered by the next-generation NVIDIA GH200 Grace Hopper Superchip to achieve performance that is best in class.

"The global generative AI race is in full steam," said Jensen Huang, founder and CEO of NVIDIA. "Data centers worldwide are shifting to GPU computing to build energy-efficient infrastructure to support the exponential demand for generative AI.

NVIDIA Partners with Reliance to Advance AI in India

In a major step to support India's industrial sector, NVIDIA and Reliance Industries today announced a collaboration to develop India's own foundation large language model trained on the nation's diverse languages and tailored for generative AI applications to serve the world's most populous nation. The companies will work together to build AI infrastructure that is over an order of magnitude more powerful than the fastest supercomputer in India today. NVIDIA will provide access to the most advanced NVIDIA GH200 Grace Hopper Superchip and NVIDIA DGX Cloud, an AI supercomputing service in the cloud. GH200 marks a fundamental shift in computing architecture that provides exceptional performance and massive memory bandwidth.

The NVIDIA-powered AI infrastructure is the foundation of the new frontier into AI for Reliance Jio Infocomm, Reliance Industries' telecom arm. The global AI revolution is transforming industries and daily life. To serve India's vast potential in AI, Reliance will create AI applications and services for their 450 million Jio customers and provide energy-efficient AI infrastructure to scientists, developers and startups across India.

Google Cloud and NVIDIA Expand Partnership to Advance AI Computing, Software and Services

Google Cloud Next—Google Cloud and NVIDIA today announced new AI infrastructure and software for customers to build and deploy massive models for generative AI and speed data science workloads.

In a fireside chat at Google Cloud Next, Google Cloud CEO Thomas Kurian and NVIDIA founder and CEO Jensen Huang discussed how the partnership is bringing end-to-end machine learning services to some of the largest AI customers in the world—including by making it easy to run AI supercomputers with Google Cloud offerings built on NVIDIA technologies. The new hardware and software integrations utilize the same NVIDIA technologies employed over the past two years by Google DeepMind and Google research teams.

NVIDIA Unveils Next-Generation GH200 Grace Hopper Superchip Platform With HMB3e

NVIDIA today announced the next-generation NVIDIA GH200 Grace Hopper platform - based on a new Grace Hopper Superchip with the world's first HBM3e processor - built for the era of accelerated computing and generative AI. Created to handle the world's most complex generative AI workloads, spanning large language models, recommender systems and vector databases, the new platform will be available in a wide range of configurations. The dual configuration - which delivers up to 3.5x more memory capacity and 3x more bandwidth than the current generation offering - comprises a single server with 144 Arm Neoverse cores, eight petaflops of AI performance and 282 GB of the latest HBM3e memory technology.

"To meet surging demand for generative AI, data centers require accelerated computing platforms with specialized needs," said Jensen Huang, founder and CEO of NVIDIA. "The new GH200 Grace Hopper Superchip platform delivers this with exceptional memory technology and bandwidth to improve throughput, the ability to connect GPUs to aggregate performance without compromise, and a server design that can be easily deployed across the entire data center."

NVIDIA Proposes that AI Will Accelerate Climate Research Innovation

AI and accelerated computing will help climate researchers achieve the miracles they need to achieve breakthroughs in climate research, NVIDIA founder and CEO Jensen Huang said during a keynote Monday at the Berlin Summit for the Earth Virtualization Engines initiative. "Richard Feynman once said that "what I can't create, I don't understand" and that's the reason why climate modeling is so important," Huang told 180 attendees at the Harnack House in Berlin, a storied gathering place for the region's scientific and research community. "And so the work that you do is vitally important to policymakers to researchers to the industry," he added.

To advance this work, the Berlin Summit brings together participants from around the globe to harness AI and high-performance computing for climate prediction. In his talk, Huang outlined three miracles that will have to happen for climate researchers to achieve their goals, and touched on NVIDIA's own efforts to collaborate with climate researchers and policymakers with its Earth-2 efforts. The first miracle required will be to simulate the climate fast enough, and with a high enough resolution - on the order of just a couple of square kilometers.
Return to Keyword Browsing
May 21st, 2024 10:16 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts