News Posts matching #quantum computer

Return to Keyword Browsing

Taiwan's Academia Sinica In-House Developed 5-Qubit Superconducting Quantum Computer Becomes Accessible Online

With computation potential far beyond current supercomputers, quantum computers are the subject of enthusiastic research and development worldwide. In 2023, Academia Sinica successfully overcame various bottlenecks in the fabrication, control, and measurement of quantum chips. In October, the creation of a 5-qubit superconducting quantum computer developed in Taiwan marked a significant milestone. Starting this week, it will be made available online to project collaborators.

Dr. Chii Dong Chen, Distinguished Research Fellow at Academia Sinica's Institute of Physics and Research Center for Applied Sciences, noted that this project is part of the quantum technology special project funded by the National Science and Technology Council. Initially scheduled to build a 3-qubit quantum computer by February of 2024, Academia Sinica's research team surpassed the development schedule approved by the National Science and Technology Council and built a 5-qubit system by October of 2023. The fidelity of the quantum bit logic gates reached an impressive 99.9%.

Rigetti Launches the Novera QPU, the Company's First Commercially Available Quantum Processor

Rigetti Computing, Inc. (Nasdaq: RGTI) ("Rigetti" or the "Company"), a pioneer in full-stack quantum-classical computing, announced today the launch of its Novera QPU, a 9-qubit quantum processing unit (QPU) based on the Company's fourth generation Ankaa -class architecture featuring tunable couplers and a square lattice for denser connectivity and fast 2-qubit operations. The Novera QPU is manufactured in Rigetti's Fab-1, the industry's first dedicated and integrated quantum device manufacturing facility.

The Novera QPU includes all of the hardware below the mixing chamber plate (MXC) of a dilution refrigerator. In addition to a 9-qubit chip with a 3x3 array of tunable transmons, the Novera QPU also includes a 5-qubit chip with no tunable couplers or qubit-qubit coupling which can be used for developing and characterizing single-qubit operations on a simpler circuit. In addition to the 9-qubit and 5-qubit chips, Novera QPU components include:

Alice & Bob Tape Out New "Helium 1" 16-Qubit Quantum Processing Unit

Alice & Bob, a leading hardware developer in the race to fault tolerant quantum computers, today announced the tape out of a new chip expected to improve error rates with every qubit added, making it a prototype for the company's first error-corrected, logical qubit.

The 16-qubit quantum processing unit (QPU), Helium 1, is the first chip in Alice & Bob's roadmap combining cat qubits to run an error correction code. The company will be able to use this platform to create its first logical qubit with error rates lower than any existing single physical qubit. With the tape-out complete, the chip enters a characterization and calibration phase that will be followed by a release on the cloud.

NVIDIA and IQM Quantum Computers to Advance Future Hybrid Quantum Applications

IQM Quantum Computers (IQM), a global leader in building quantum computers, today announced a collaboration with NVIDIA to advance future hybrid quantum applications through NVIDIA CUDA Quantum, an open-source platform for integrating and programming quantum processing units in one system. As part of this collaboration, users of IQM's quantum processing units across enterprises and research institutions can program and develop the next generation of hybrid quantum-classical applications with NVIDIA CUDA Quantum.

The collaboration aims to accelerate the development and utilization of quantum computing in various applications, fostering innovation, collaboration, and potential breakthroughs in science and industry. Leading institutions, such as CSC - IT Centre for Science and the VTT Technical Research Centre of Finland, plan to utilise CUDA Quantum on VTT's 5-qubit quantum computer developed in co-innovation partnership by IQM and VTT.

Quantum Startup Atom Computing First to Exceed 1,000 Qubits

Atom Computing announced it has created a 1,225-site atomic array, currently populated with 1,180 qubits, in its next-generation quantum computing platform. This is the first time a company has crossed the 1,000-qubit threshold for a universal gate-based system, planned for release next year. It marks an industry milestone toward fault-tolerant quantum computers capable of solving large-scale problems.

CEO Rob Hays said rapid scaling is a key benefit of Atom Computing's unique atomic array technology. "This order-of-magnitude leap - from 100 to 1,000-plus qubits within a generation - shows our atomic array systems are quickly gaining ground on more mature qubit modalities," Hays said. "Scaling to large numbers of qubits is critical for fault-tolerant quantum computing, which is why it has been our focus from the beginning. We are working closely with partners to explore near-term applications that can take advantage of these larger scale systems."

Quantinuum's H1 Quantum Computer Successfully Executes a Fully Fault-tolerant Algorithm

Fault-tolerant quantum computers that offer radical new solutions to some of the world's most pressing problems in medicine, finance and the environment, as well as facilitating a truly widespread use of AI, are driving global interest in quantum technologies. Yet the various timetables that have been established for achieving this paradigm require major breakthroughs and innovations to remain achievable, and none is more pressing than the move from merely physical qubits to those that are fault-tolerant.

In one of the first meaningful steps along this path, scientists from Quantinuum, the world's largest integrated quantum computing company, along with collaborators, have demonstrated the first fault-tolerant method using three logically-encoded qubits on the Quantinuum H1 quantum computer, Powered by Honeywell, to perform a mathematical procedure.

IBM Quantum System One Quantum Computer Installed at PINQ²

The Platform for Digital and Quantum Innovation of Quebec (PINQ²), a non-profit organization (NPO) founded by the Ministry of Economy, Innovation and Energy of Quebec (MEIE - ministère de l'Économie, de l'Innovation et de l'Énergie du Québec) and the Université de Sherbrooke, along with IBM, are proud to announce the historic inauguration of an IBM Quantum System One at IBM Bromont. This event marks a major turning point in the field of information technology and all sectors of innovation in Quebec, making PINQ² the sole administrator to inaugurate and operate an IBM Quantum System One in Canada. To date, this is one of the most advanced quantum computers in IBM's global fleet of quantum computers.

This new quantum computer in Quebec reinforces Quebec's and Canada's position as a force in the rapidly advancing field of quantum computing, opening new prospects for the technological future of the province and the country. Access to this technology is a considerable asset not only for the ecosystem of DistriQ, the quantum innovation zone for Quebec, but also for the Technum Québec innovation zone, the new "Energy Transition Valley" innovation zone and other strategic sectors for Quebec.

NVIDIA cuQuantum with PennyLane Lets Simulations Ride Supercomputers

Ten miles in from Long Island's Atlantic coast, Shinjae Yoo is revving his engine. The computational scientist and machine learning group lead at the U.S. Department of Energy's Brookhaven National Laboratory is one of many researchers gearing up to run quantum computing simulations on a supercomputer for the first time, thanks to new software.

Yoo's engine, the Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC), is using the latest version of PennyLane, a quantum programming framework from Toronto-based Xanadu. The open-source software, which builds on the NVIDIA cuQuantum software development kit, lets simulations run on high-performance clusters of NVIDIA GPUs. The performance is key because researchers like Yoo need to process ocean-size datasets. He'll run his programs across as many as 256 NVIDIA A100 Tensor Core GPUs on Perlmutter to simulate about three dozen qubits—the powerful calculators quantum computers use. That's about twice the number of qubits most researchers can model these days.

RPI Announced as the First University to House IBM's Quantum System One

Today, it was announced that Rensselaer Polytechnic Institute will become the first university in the world to house an IBM Quantum System One. The IBM quantum computer, intended to be operational by January of 2024, will serve as the foundation of a new IBM Quantum Computational Center in partnership with Rensselaer Polytechnic Institute (RPI). By partnering, RPI's vision is to greatly enhance the educational experiences and research capabilities of students and researchers at RPI and other institutions, propel the Capital Region into a top location for talent, and accelerate New York's growth as a technology epicenter.

RPI's advance into research of applications for quantum computing will represent a more than $150 million investment once fully realized, aided by philanthropic support from Curtis R. Priem '82, vice chair of RPI's Board of Trustees. The new quantum computer will be part of RPI's new Curtis Priem Quantum Constellation, a faculty endowed center for collaborative research, which will prioritize the hiring of additional faculty leaders who will leverage the quantum computing system.

Microsoft Expects to Construct a Quantum Supercomputer Within a Decade

Earlier this week Microsoft revealed its roadmap for the building of a proprietary quantum supercomputer. The company's research department has been making progress with the elusive building blocks of topological qubits over a number of years. Microsoft's VP of advanced quantum development - Krysta Svore - has informed TechCrunch that their team anticipates it taking under ten years to construct and complete a quantum supercomputer utilizing qubits, with a view to perform a reliable one million quantum operations per second. Svore stated: "We think about our roadmap and the time to the quantum supercomputer in terms of years rather than decades."

Majorana-based qubits are extremely difficult to create, but worth the effort due to being inherently stable. Microsoft's quantum team has dedicated itself to hitting a first milestone, with more devices developed and data collected since last year's major breakthrough. Svore reiterates: "Today, we're really at this foundational implementation level...We have noisy intermediate-scale quantum machines. They're built around physical qubits and they're not yet reliable enough to do something practical and advantageous in terms of something useful. For science or for the commercial industry. The next level we need to get to as an industry is the resilient level. We need to be able to operate not just with physical qubits but we need to take those physical qubits and put them into an error-correcting code and use them as a unit to serve as a logical qubit." Svore's team is focusing more on the building of hardware-protected qubits, that are tiny - "smaller than 10 microns on a side" with performance of one qubit operation in less than a microsecond.

IBM and UC Berkeley Collaborate on Practical Quantum Computing

For weeks, researchers at IBM Quantum and UC Berkeley were taking turns running increasingly complex physical simulations. Youngseok Kim and Andrew Eddins, scientists with IBM Quantum, would test them on the 127-qubit IBM Quantum Eagle processor. UC Berkeley's Sajant Anand would attempt the same calculation using state-of-the-art classical approximation methods on supercomputers located at Lawrence Berkeley National Lab and Purdue University. They'd check each method against an exact brute-force classical calculation.

Eagle returned accurate answers every time. And watching how both computational paradigms performed as the simulations grew increasingly complex made both teams feel confident the quantum computer was still returning answers more accurate than the classical approximation methods, even in the regime beyond the capabilities of the brute force methods. "The level of agreement between the quantum and classical computations on such large problems was pretty surprising to me personally," said Eddins. "Hopefully it's impressive to everyone."

Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing

Today, Intel announced the release of its newest quantum research chip, Tunnel Falls, a 12-qubit silicon chip, and it is making the chip available to the quantum research community. In addition, Intel is collaborating with the Laboratory for Physical Sciences (LPS) at the University of Maryland, College Park's Qubit Collaboratory (LQC), a national-level Quantum Information Sciences (QIS) Research Center, to advance quantum computing research.

"Tunnel Falls is Intel's most advanced silicon spin qubit chip to date and draws upon the company's decades of transistor design and manufacturing expertise. The release of the new chip is the next step in Intel's long-term strategy to build a full-stack commercial quantum computing system. While there are still fundamental questions and challenges that must be solved along the path to a fault-tolerant quantum computer, the academic community can now explore this technology and accelerate research development."—Jim Clarke, director of Quantum Hardware, Intel

RIKEN and Intel Collaborate on "Road to Exascale"

RIKEN and Intel Corporation (hereafter referred to as Intel) have signed a memorandum of understanding on collaboration and cooperation to accelerate joint research in next-generation computing fields such as AI (artificial intelligence), high-performance computing, and quantum computers. The signing ceremony was concluded on May 18, 2023. As part of this MOU, RIKEN will work with Intel Foundry Services (IFS) to prototype these new solutions.

IonQ Aria Now Available on Amazon Braket Cloud Quantum Computing Service

Today at Commercialising Quantum Global 2023, IonQ (NYSE: IONQ), an industry leader in quantum computing, announced the availability of IonQ Aria on Amazon Braket, AWS's quantum computing service. This expands upon IonQ's existing presence on Amazon Braket, following the debut of IonQ's Harmony system on the platform in 2020. With broader access to IonQ Aria, IonQ's flagship system with 25 algorithmic qubits (#AQ)—more than 65,000 times more powerful than IonQ Harmony—users can now explore, design, and run more complex quantum algorithms to tackle some of the most challenging problems of today.

"We are excited for IonQ Aria to become available on Amazon Braket, as we expand the ways users can access our leading quantum computer on the most broadly adopted cloud service provider," said Peter Chapman, CEO and President, IonQ. "Amazon Braket has been instrumental in commercializing quantum, and we look forward to seeing what new approaches will come from the brightest, most curious, minds in the space."

Quantinuum Solves Quantum Computing Error Correction With System H2 Model

Quantinuum is proud and excited to announce this significant step towards fault tolerant quantum computing. This achievement has been uniquely enabled by the release of Quantinuum's System Model H2 - the highest performing quantum computer ever built. The official launch of Quantinuum's H2 quantum processor, Powered by Honeywell, follows extensive pre-launch work with a variety of global partners and was essential to the controlled creation and manipulation of non-Abelian anyons. The precise control of non-Abelian anyons has been long held as the path to using topological qubits for a fault tolerant quantum computer.

Tony Uttley, President and COO of Quantinuum, stated "With our second-generation system, we are entering a new phase of quantum computing. H2 highlights the opportunity to achieve valuable outcomes that are only possible with a quantum computer. The development of the H2 processor is also a critical step in moving towards universal fault tolerant quantum computing." He added "This demonstration is a beautiful proof point in the power of our H-Series hardware roadmap and reinforces our primary purpose which is to enable our customers to tackle problems that were previously beyond the reach of classical computers. The implications for society are significant and we are excited to see how this technology truly changes the world."

IQM Quantum Computers to Deliver Quantum Processing Units for the First Spanish Quantum Computer

IQM Quantum Computers (IQM), the European leader in quantum computers, announced today it has been selected to deliver quantum processing units for the first Spanish quantum computer to be installed at the Barcelona Supercomputing Center (BSC) and integrated into the MareNostrum 5 supercomputer, the most powerful in Spain. "This is another example of our European leadership, demonstrating our commitment to advancing the Spanish quantum ecosystem in collaboration with both public and private institutions. Through our office in Madrid, we are also able to provide the necessary support for this project."

IQM is a member of the consortium led by Spanish companies Qilimanjaro Quantum Tech and GMV that was selected by Quantum Spain, an initiative promoted by the Ministry of Economic Affairs and Digital Transformation through the Secretary of State for Digitalisation and Artificial Intelligence (SEDIA) in December 2022, to build the first quantum computer for public use in Southern Europe.

Intel Releases Quantum Software Development Kit Version 1.0 to Grow Developer Ecosystem

After launching its beta version in September 2022, Intel today released version 1.0 of the Intel Quantum Software Development Kit (SDK). The SDK is a full quantum computer in simulation that can also interface with Intel's quantum hardware, including Intel's Horse Ridge II control chip and Intel's quantum spin qubit chip when it becomes available this year. The kit allows developers to program quantum algorithms in simulation, and it features an intuitive programming interface written in C++ using an industry-standard low-level virtual machine (LLVM) compiler toolchain. As a result, Intel's SDK offers seamless interfacing with C/C++ and Python applications, making it more versatile and customizable.

"The Intel Quantum SDK helps programmers get ready for future large-scale commercial quantum computers. It will not only help developers learn how to create quantum algorithms and applications in simulation, but it will also advance the industry by creating a community of developers that will accelerate the development of applications, so they are ready when Intel's quantum hardware becomes available," said Anne Matsuura, director of Quantum Applications & Architecture, Intel Labs.

Origin Quantum Announces Wuyuan, China's First Practical 24-qubit Quantum Computer

Chinese company Origin Quantum announced that it has developed China's first practical 24-qubit quantum computer using superconducting chip technology, named Wuyuan. The computer uses an unspecified number of quantum processing units (QPUs), but comes with a custom operating system, and a cloud-computing platform, allowing Chinese businesses to hire the computer as they would any HPC cloud-computing instance. Origin Quantum said that with the production of Wuyuan, the company is already developing an even more powerful quantum computer, named Wukong. Origin Quantum is one of the many curiously new Chinese high-technology startups that have sprung up and don't feature on Western tech sanctions lists, to which Western companies are forbidden to sale certain high-tech machinery and chips to.
Many Thanks to TumbleGeorge for the tip.

IonQ to Open First Quantum Computing Manufacturing Facility in the US

IonQ, Inc. (NYSE: IONQ), an industry leader in quantum computing, today announced plans to open the first known dedicated quantum computing manufacturing facility in the U.S., located in the suburbs of Seattle, Washington. The new facility will house IonQ's growing R&D and manufacturing teams, as they develop systems to meet continued customer demand. With public support from U.S. Senator Patty Murray (D-WA) - an early proponent of the CHIPS and Science Act - and Congresswoman Suzan DelBene, US representative from Washington's 1st congressional district,today's announcement is part of IonQ's broader intent to invest $1 billion through expansion in the Pacific Northwest over the next 10 years.

"IonQ making the decision to open the first ever quantum computing manufacturing facility in the country right here in Bothell is a very big deal—and it's great news for Washington state," said Senator Murray. "Opening this facility will absolutely help ensure Washington state continues to be a leader in innovation and cutting-edge technologies—but it also means jobs that will be an investment in our families and their futures. These are the kinds of investments that happen when we pass legislation like the CHIPS and Science Act to invest in American manufacturing and build the economy of the future right here at home."

Intel Hits Key Milestone in Quantum Chip Production Research

The Intel Labs and Components Research organizations have demonstrated the industry's highest reported yield and uniformity to date of silicon spin qubit devices developed at Intel's transistor research and development facility, Gordon Moore Park at Ronler Acres in Hillsboro, Oregon. This achievement represents a major milestone for scaling and working towards fabricating quantum chips on Intel's transistor manufacturing processes.

The research was conducted using Intel's second-generation silicon spin test chip. Through testing the devices using the Intel cryoprober, a quantum dot testing device that operates at cryogenic temperatures (1.7 Kelvin or -271.45 degrees Celsius), the team isolated 12 quantum dots and four sensors. This result represents the industry's largest silicon electron spin device with a single electron in each location across an entire 300 millimeter silicon wafer.

Intel Accelerates Developer Innovation with Open, Software-First Approach

On Day 2 of Intel Innovation, Intel illustrated how its efforts and investments to foster an open ecosystem catalyze community innovation, from silicon to systems to apps and across all levels of the software stack. Through an expanding array of platforms, tools and solutions, Intel is focused on helping developers become more productive and more capable of realizing their potential for positive social good. The company introduced new tools to support developers in artificial intelligence, security and quantum computing, and announced the first customers of its new Project Amber attestation service.

"We are making good on our software-first strategy by empowering an open ecosystem that will enable us to collectively and continuously innovate," said Intel Chief Technology Officer Greg Lavender. "We are committed members of the developer community and our breadth and depth of hardware and software assets facilitate the scaling of opportunities for all through co-innovation and collaboration."

Toshiba's Double-Transmon Coupler Will Realize Faster, More Accurate Superconducting Quantum Computers

Researchers at Toshiba Corporation have achieved a breakthrough in quantum computer architecture: the basic design for a double-transmon coupler that will improve the speed and accuracy of quantum computation in tunable couplers. The coupler is a key device in determining the performance of superconducting quantum computers.

Tunable couplers in a superconducting quantum computer link two qubits and perform quantum computations by turning on and off the coupling between them. Current technology can turn off the coupling of transmon qubits with close frequencies, but this is prone to crosstalk errors that occur on one of the qubits when the other qubit is irradiated with electromagnetic waves for control. In addition, current technology cannot completely turn off coupling for qubits with significantly different frequencies, resulting in errors due to residual coupling.

Baidu Releases Superconducting Quantum Computer and World's First All-Platform Integration Solution, Making Quantum Computing Within Reach

Baidu, Inc., a leading AI company with strong Internet foundation, today announced its first superconducting quantum computer that fully integrates hardware, software, and applications. On top of this, Baidu also introduced the world's first all-platform quantum hardware-software integration solution that provides access to various quantum chips via mobile app, PC, and cloud. Launched at Quantum Create 2022, a quantum developer conference held in Beijing, this new offering paves the way for the long-awaited industrialization of quantum computing.

A revolutionary technology that harnesses the laws of quantum mechanics to solve problems beyond the reach of classical computers, quantum computing is expected to bring ground-breaking transformations in fields like artificial intelligence (AI), computational biology, material simulation, and financial technology. However, a significant gap remains between quantum devices and services.

Australia Installs First Room-Temperature Diamond Quantum Computer

Quantum computing is an upcoming acceleration aiding classical computational methods to achieve monumental speed-ups at a few select problems. Unlike classical computers, quantum systems usually require sub-ambient cooling to make them work. At Quantum Brilliance, an Australian-Germany startup company, researchers have been developing quantum accelerators based on diamonds. Today, we got the world's first installation of room-temperature on-premises quantum computers at Australia's Pawsey Supercomputing Centre. While we don't have much information about the computational capability of the system, we know that it is paired with HPE Setonix, Pawsey's HPE Cray EX supercomputer.

In a brief YouTube video shared by Pawsey, it is highlighted that the benefits of using quantum accelerators are real, and they are figuring out ways to integrate it with the center's hardware and software stack for better usage. Meanwhile, Quantum Brilliance diamond accelerators are still a black box of some sort as the technology is known to the startup and its collaborating Australian universities. All we know is that the company is harnessing nitrogen-vacancy (NV) center in diamonds, which supposedly have the longest coherence time of any room temperature quantum state. This translates to a qubit that can operate anywhere a classical computer can.

Introducing IonQ Forte, Improving Quantum Performance with a Software-Configurable Dynamic Laser System

IonQ, an industry leader in quantum computing, announced IonQ Forte, its latest generation of quantum systems. The system features novel, cutting-edge optics technology that enables increased accuracy and further enhances IonQ's industry leading system performance. Forte is expected to be initially available for select developers, partners, and researchers in 2022 and is expected to be available for broader customer access in 2023. Forte is the latest evolution towards a "software-configurable quantum computer," which is designed to allow the company to optimize the computing hardware for targeted user problems-ultimately, giving users customized algorithmic performance. The new system features acousto-optic deflector (AOD) technology, which allows IonQ to dynamically direct laser beams that drive quantum gates towards individual ions. The AOD is designed to minimize noise and overcome variations in ion position, improving fidelity in long chains of trapped ions, which is crucial for scaling quantum computers. In addition, key parameters, including qubit and gate configuration, can be tailored to user needs, creating a truly dynamic and flexible system.

Forte joins IonQ Aria as the company's second system with capacity of up to 32 qubits, has AOD systems capable of addressing up to 40 individual ion qubits, and is currently configured to use 31 of them. With this technological leap, IonQ furthers its commitment to building ever more powerful quantum computers with an increasing number of algorithmic qubits, an application-oriented performance metric for quantum computers. The new announcement follows IonQ's announcement of open-source access to native gates, which allows quantum application developers to explore software breakthroughs on top of IonQ hardware without having to choose from a set menu of gates.
Return to Keyword Browsing
Apr 30th, 2024 22:47 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts