Tuesday, July 16th 2024
Intel Core Ultra 200 "Arrow Lake-S" Desktop Processor Core Configurations Surface
Intel is preparing a complete refresh of its desktop platform this year, with the introduction of the Core Ultra 200 series processors based on the "Arrow Lake" microarchitecture. The company skipped a desktop processor based on "Meteor Lake," probably because it didn't meet the desired multithreaded performance targets for Intel as it maxed out at 6P+8E+2LP, forcing Intel to come up with the 14th Gen Core "Raptor Lake Refresh" generation to see it through 2H-2023 and at least three quarters of 2024. The company, in all likelihood, will launch the new "Arrow Lake-S" Core Ultra 200 series toward late-Q3 or early-Q4 2024 (September-October). The first wave will include the overclocker-friendly K- and KF SKUs, alongside motherboards based on the top Intel Z890 chipset. 2025 will see the series ramp to more affordable processor models, and mainstream chipsets, such as the B860. These processors require a new motherboard, as Intel is introducing the new Socket LGA1851 with them.
Core configurations of the "Arrow Lake-S" chip surfaced on the web thanks to Jaykihn, a reliable source with Intel leaks. In its maximum configuration, the chip is confirmed to feature 8 P-cores, and 16 E-cores. There are no low-power island E-cores. Each of the 8 P-cores is a "Lion Cove" featuring 3 MB of dedicated L2 cache; while each the E-cores are "Skymont," arranged in 4-core modules that share 4 MB L2 caches among them. Intel claims that the "Lion Cove" P-core offers a 14% IPC increase over the "Redwood Cove" P-core powering "Meteor Lake," which in turn had either equal or a 1% IPC regression compared to "Raptor Cove." This would put "Lion Cove" at a 13-14% IPC advantage over the "Raptor Cove" cores. It's important to note here, that the "Lion Cove" P-cores lack HyperThreading, so Intel will be banking heavily on the "Skymont" E-cores to shore up generational multithreaded performance increase. "Skymont" was a show-stopper at Intel's Computex event, with a nearly 50% IPC gain over previous generations of Intel E-cores, which puts it at par with the "Raptor Cove" cores in single-thread performance.On to the specific core-configurations, and it's no surprise that the Core Ultra 9 brand extension will max out the silicon, featuring an 8P+16E configuration. The Core Ultra 7 series will be 8P+12E.
The Core Ultra 5 series is subdivided into two—the K SKU will be based on the same B0 silicon as the Core Ultra 7 and Ultra 9 SKUs, and feature a 6P+8E configuration, whereas the other SKUs will be based on the C0 silicon. This is likely a physically smaller chip that only has a maximum of 6 P-cores and 8 E-cores, so Intel doesn't have to end up disabling two each of P-cores and E-core clusters to make them. Some of the non-K Core Ultra 5 SKUs will be 6P+8E, while the entry-level SKUs (such as the SKU that succeeds the current i5-14400) will be 6P+4E.
We have a theory that the C0 silicon not only has just 6 P-cores and 8 E-cores, but also smaller caches, such as 2.5 MB L2 cache per P-core, the way it is on "Lunar Lake."
The "Arrow Lake-S" desktop processor, for both the B0 and C0 dies, has an iGPU with just 4 Xe cores. The iGPU is based on the Xe2 "Battlemage" graphics architecture, but may lack the Arc Graphics branding, as these aren't quite meant for gaming. The 4 Xe cores would give the iGPU just 64 EU (execution units), or 512 unified shaders. This is still plenty of muscle for a non-gaming setup with two or more high-resolution (4K or 8K) monitors, which means the non-gaming desktop crowd is sufficiently covered with this iGPU.
The Core Ultra 9 series will likely lack a "KF" SKU, it will offer the iGPU with all 4 Xe cores (64 EU) enabled. The Core Ultra 7 series will have K and KF SKUs, the K SKUs will have the maxed out iGPU with 4 Xe cores, while the KF will have the iGPU disabled. The Core Ultra 5 K-series SKU will have the maxed out iGPU, the KF SKU will lack it; while things are s little different with the non-K/KF SKUs. The C0 silicon has the same iGPU as the B0, with 4 Xe cores available. Some of the upper Core Ultra 5 non-K SKUs will get 4 Xe Cores, the middle ones will get 3 Xe cores (48 EU), while the lower-end ones will get 2 Xe cores (32 EU).
Sources:
Jaykihn (Twitter), VideoCardz
Core configurations of the "Arrow Lake-S" chip surfaced on the web thanks to Jaykihn, a reliable source with Intel leaks. In its maximum configuration, the chip is confirmed to feature 8 P-cores, and 16 E-cores. There are no low-power island E-cores. Each of the 8 P-cores is a "Lion Cove" featuring 3 MB of dedicated L2 cache; while each the E-cores are "Skymont," arranged in 4-core modules that share 4 MB L2 caches among them. Intel claims that the "Lion Cove" P-core offers a 14% IPC increase over the "Redwood Cove" P-core powering "Meteor Lake," which in turn had either equal or a 1% IPC regression compared to "Raptor Cove." This would put "Lion Cove" at a 13-14% IPC advantage over the "Raptor Cove" cores. It's important to note here, that the "Lion Cove" P-cores lack HyperThreading, so Intel will be banking heavily on the "Skymont" E-cores to shore up generational multithreaded performance increase. "Skymont" was a show-stopper at Intel's Computex event, with a nearly 50% IPC gain over previous generations of Intel E-cores, which puts it at par with the "Raptor Cove" cores in single-thread performance.On to the specific core-configurations, and it's no surprise that the Core Ultra 9 brand extension will max out the silicon, featuring an 8P+16E configuration. The Core Ultra 7 series will be 8P+12E.
The Core Ultra 5 series is subdivided into two—the K SKU will be based on the same B0 silicon as the Core Ultra 7 and Ultra 9 SKUs, and feature a 6P+8E configuration, whereas the other SKUs will be based on the C0 silicon. This is likely a physically smaller chip that only has a maximum of 6 P-cores and 8 E-cores, so Intel doesn't have to end up disabling two each of P-cores and E-core clusters to make them. Some of the non-K Core Ultra 5 SKUs will be 6P+8E, while the entry-level SKUs (such as the SKU that succeeds the current i5-14400) will be 6P+4E.
We have a theory that the C0 silicon not only has just 6 P-cores and 8 E-cores, but also smaller caches, such as 2.5 MB L2 cache per P-core, the way it is on "Lunar Lake."
The "Arrow Lake-S" desktop processor, for both the B0 and C0 dies, has an iGPU with just 4 Xe cores. The iGPU is based on the Xe2 "Battlemage" graphics architecture, but may lack the Arc Graphics branding, as these aren't quite meant for gaming. The 4 Xe cores would give the iGPU just 64 EU (execution units), or 512 unified shaders. This is still plenty of muscle for a non-gaming setup with two or more high-resolution (4K or 8K) monitors, which means the non-gaming desktop crowd is sufficiently covered with this iGPU.
The Core Ultra 9 series will likely lack a "KF" SKU, it will offer the iGPU with all 4 Xe cores (64 EU) enabled. The Core Ultra 7 series will have K and KF SKUs, the K SKUs will have the maxed out iGPU with 4 Xe cores, while the KF will have the iGPU disabled. The Core Ultra 5 K-series SKU will have the maxed out iGPU, the KF SKU will lack it; while things are s little different with the non-K/KF SKUs. The C0 silicon has the same iGPU as the B0, with 4 Xe cores available. Some of the upper Core Ultra 5 non-K SKUs will get 4 Xe Cores, the middle ones will get 3 Xe cores (48 EU), while the lower-end ones will get 2 Xe cores (32 EU).
55 Comments on Intel Core Ultra 200 "Arrow Lake-S" Desktop Processor Core Configurations Surface
38476 - 15,600 = 22876 (removal of ecore score).
22876 - 5200 (your number for disabling hyper threading, I assumed larger deficit previously) = 17676 (base pcore)
(17676 *1.10) + (15600 * 1.5) = 41,076
Without knowing final clock frequencies (which are as of intels mobile release guaranteed to be lower) and what gains from potential mitigations due to hyper threading removal, intel will barely surpass 14th gen in MT. I hope they focus more on improving efficiency and stock TDP, as both 13th and 14th gen are horrendous. I wouldn’t be bothered by a marginal shift in MT, but compared to the 9000 series, potentially not releasing until December is likely to make this new line of processors look poor vs the competition.
Efficiency is already great, stock TDP sure, but that's configurable so who cares.
TPU scores are what I find trustworthy and also as a baseline. You can cherry pick and move the goal posts as much as you want, the fact remains what you attempt to pass off as “default” or baseline scores for any Intel processor across the forums is always modified through bios alterations - this is not stock.
Either way, you can choose to believe whatever you like, it’s an estimation based on what we know so far: IPC improvement, clock speed regression, lack of hyper threading, and a best case scenario that the e-cores are in fact 50% faster.
We don’t need another thread with you spreading delusions about their efficiency, or lack there of.
You are using my scores with HT off and cross compare it with TPUs when we are testing with different methodologies. That's all I pointed out. You can't use my HT off scores and compare them with TPUs..
If you don't think RPL are efficient then you are the one with the delusions bud. 14900k is the 2nd most efficient desktop chip in MT efficiency. If that's not efficient enough for you then what the hell is every other chip?
You said that Intel should decrease TDP and increase efficiency. I'm pointing out that if they decrease their TDP, their efficiency is already superb on 14th gen. Here is the data that demonstrates it