- Joined
- Oct 9, 2007
- Messages
- 47,233 (7.55/day)
- Location
- Hyderabad, India
System Name | RBMK-1000 |
---|---|
Processor | AMD Ryzen 7 5700G |
Motherboard | ASUS ROG Strix B450-E Gaming |
Cooling | DeepCool Gammax L240 V2 |
Memory | 2x 8GB G.Skill Sniper X |
Video Card(s) | Palit GeForce RTX 2080 SUPER GameRock |
Storage | Western Digital Black NVMe 512GB |
Display(s) | BenQ 1440p 60 Hz 27-inch |
Case | Corsair Carbide 100R |
Audio Device(s) | ASUS SupremeFX S1220A |
Power Supply | Cooler Master MWE Gold 650W |
Mouse | ASUS ROG Strix Impact |
Keyboard | Gamdias Hermes E2 |
Software | Windows 11 Pro |
NVIDIA at its GeForce "Ampere" launch event announced the RTX IO technology. Storage is the weakest link in a modern computer, from a performance standpoint, and SSDs have had a transformational impact. With modern SSDs leveraging PCIe, consumer storage speeds are now bound to grow with each new PCIe generation doubling per-lane IO bandwidth. PCI-Express Gen 4 enables 64 Gbps bandwidth per direction on M.2 NVMe SSDs, AMD has already implemented it across its Ryzen desktop platform, Intel has it on its latest mobile platforms, and is expected to bring it to its desktop platform with "Rocket Lake." While more storage bandwidth is always welcome, the storage processing stack (the task of processing ones and zeroes to the physical layer), is still handled by the CPU. With rise in storage bandwidth, the IO load on the CPU rises proportionally, to a point where it can begin to impact performance. Microsoft sought to address this emerging challenge with the DirectStorage API, but NVIDIA wants to build on this.
According to tests by NVIDIA, reading uncompressed data from an SSD at 7 GB/s (typical max sequential read speeds of client-segment PCIe Gen 4 M.2 NVMe SSDs), requires the full utilization of two CPU cores. The OS typically spreads this workload across all available CPU cores/threads on a modern multi-core CPU. Things change dramatically when compressed data (such as game resources) are being read, in a gaming scenario, with a high number of IO requests. Modern AAA games have hundreds of thousands of individual resources crammed into compressed resource-pack files.
Although at a disk IO-level, ones and zeroes are still being moved at up to 7 GB/s, the de-compressed data stream at the CPU-level can be as high as 14 GB/s (best case compression). Add to this, each IO request comes with its own overhead - a set of instructions for the CPU to fetch x piece of resource from y file, and deliver to z buffer, along with instructions to de-compress or decrypt the resource. This could take an enormous amount of CPU muscle at a high IO throughput scale, and NVIDIA pegs the number of CPU cores required as high as 24. As we explained earlier, DirectStorage enables a path for devices to directly process the storage stack to access the resources they need. The API by Microsoft was originally developed for the Xbox Series X, but is making its debut on the PC platform.
NVIDIA RTX IO is a concentric outer layer of DirectStorage, which is optimized further for gaming, and NVIDIA's GPU architecture. RTX IO brings to the table GPU-accelerated lossless data decompression, which means data remains compressed and bunched up with fewer IO headers, as it's being moved from the disk to the GPU, leveraging DirectStorage. NVIDIA claims that this improves IO performance by a factor of 2. NVIDIA further claims that GeForce RTX GPUs, thanks to their high CUDA core counts, are capable of offloading "dozens" of CPU cores, driving decompression performance beyond even what compressed data loads PCIe Gen 4 SSDs can throw at them.
There is, however, a tiny wrinkle. Games need to be optimized for DirectStorage. Since the API has already been deployed on Xbox since the Xbox Series X, most AAA games for Xbox that have PC versions, already have some awareness of the tech, however, the PC versions will need to be patched to use the tech. Games will further need NVIDIA RTX IO awareness, and NVIDIA needs to add support on a per-game basis via GeForce driver updates. NVIDIA didn't detail which GPUs will support the tech, but given its wording, and the use of "RTX" in the branding of the feature, NVIDIA could release the feature to RTX 20-series "Turing" and RTX 30-series "Ampere." The GTX 16-series probably misses out as what NVIDIA hopes to accomplish with RTX IO is probably too heavy on the 16-series, and this may have purely been a performance-impact based decision for NVIDIA.
View at TechPowerUp Main Site
According to tests by NVIDIA, reading uncompressed data from an SSD at 7 GB/s (typical max sequential read speeds of client-segment PCIe Gen 4 M.2 NVMe SSDs), requires the full utilization of two CPU cores. The OS typically spreads this workload across all available CPU cores/threads on a modern multi-core CPU. Things change dramatically when compressed data (such as game resources) are being read, in a gaming scenario, with a high number of IO requests. Modern AAA games have hundreds of thousands of individual resources crammed into compressed resource-pack files.
Although at a disk IO-level, ones and zeroes are still being moved at up to 7 GB/s, the de-compressed data stream at the CPU-level can be as high as 14 GB/s (best case compression). Add to this, each IO request comes with its own overhead - a set of instructions for the CPU to fetch x piece of resource from y file, and deliver to z buffer, along with instructions to de-compress or decrypt the resource. This could take an enormous amount of CPU muscle at a high IO throughput scale, and NVIDIA pegs the number of CPU cores required as high as 24. As we explained earlier, DirectStorage enables a path for devices to directly process the storage stack to access the resources they need. The API by Microsoft was originally developed for the Xbox Series X, but is making its debut on the PC platform.
NVIDIA RTX IO is a concentric outer layer of DirectStorage, which is optimized further for gaming, and NVIDIA's GPU architecture. RTX IO brings to the table GPU-accelerated lossless data decompression, which means data remains compressed and bunched up with fewer IO headers, as it's being moved from the disk to the GPU, leveraging DirectStorage. NVIDIA claims that this improves IO performance by a factor of 2. NVIDIA further claims that GeForce RTX GPUs, thanks to their high CUDA core counts, are capable of offloading "dozens" of CPU cores, driving decompression performance beyond even what compressed data loads PCIe Gen 4 SSDs can throw at them.
There is, however, a tiny wrinkle. Games need to be optimized for DirectStorage. Since the API has already been deployed on Xbox since the Xbox Series X, most AAA games for Xbox that have PC versions, already have some awareness of the tech, however, the PC versions will need to be patched to use the tech. Games will further need NVIDIA RTX IO awareness, and NVIDIA needs to add support on a per-game basis via GeForce driver updates. NVIDIA didn't detail which GPUs will support the tech, but given its wording, and the use of "RTX" in the branding of the feature, NVIDIA could release the feature to RTX 20-series "Turing" and RTX 30-series "Ampere." The GTX 16-series probably misses out as what NVIDIA hopes to accomplish with RTX IO is probably too heavy on the 16-series, and this may have purely been a performance-impact based decision for NVIDIA.
View at TechPowerUp Main Site