- Joined
- Oct 9, 2007
- Messages
- 47,244 (7.54/day)
- Location
- Hyderabad, India
System Name | RBMK-1000 |
---|---|
Processor | AMD Ryzen 7 5700G |
Motherboard | ASUS ROG Strix B450-E Gaming |
Cooling | DeepCool Gammax L240 V2 |
Memory | 2x 8GB G.Skill Sniper X |
Video Card(s) | Palit GeForce RTX 2080 SUPER GameRock |
Storage | Western Digital Black NVMe 512GB |
Display(s) | BenQ 1440p 60 Hz 27-inch |
Case | Corsair Carbide 100R |
Audio Device(s) | ASUS SupremeFX S1220A |
Power Supply | Cooler Master MWE Gold 650W |
Mouse | ASUS ROG Strix Impact |
Keyboard | Gamdias Hermes E2 |
Software | Windows 11 Pro |
Amid all the attention the next-generation "Lion Cove" P-cores powering the upcoming "Lunar Lake" and "Arrow Lake" microarchitectures get as they compete with AMD's "Zen 5," it's easy to lose sight of the next-generation "Skymont" E-cores that will feature in both the upcoming Intel microarchitectures, and as standalone cores in the "Twin Lake" low-power processor. Pictures from an Intel presentation, possibly to PC OEMs, got leaked to the web. These are just thumbnails, we can't see the whole slides, but the person who took the pictures captioned them in a now-deleted social media post on the Chinese microblogging platform Weibo.
And now, the big reveal—the "Skymont" E-core is said to offer a double-digit IPC gain over the "Crestmont" E-core powering the current "Meteor Lake" processor, which in itself posted a roughly 4% IPC gain over the "Gracemont" E-cores found in the "Raptor Lake" and "Alder Lake" microarchitectures. Such an IPC gain over "Gracemont" should make the "Skymont" E-core match the IPC of the "Sunny Cove" or "Willow Cove" P-cores powering the "Ice Lake" and "Tiger Lake" microarchitectures, respectively, which were both within the 90th percentile of the AMD "Zen 3" core in IPC.
Intel is achieving this double-digit IPC gain over "Crestmont" through an improved branch prediction unit, a broader 9-wide Decode unit compared to the 6-wide Decode unit of "Crestmont," and an 8-wide integer ALU, compared to 4 Integer ALU on its predecessor, a dependency optimization in the out-of-order engine, and deeper queuing across the engine. The E-cores might still be arranged in clusters that share an L2 cache among a certain number of cores.
View at TechPowerUp Main Site | Source
And now, the big reveal—the "Skymont" E-core is said to offer a double-digit IPC gain over the "Crestmont" E-core powering the current "Meteor Lake" processor, which in itself posted a roughly 4% IPC gain over the "Gracemont" E-cores found in the "Raptor Lake" and "Alder Lake" microarchitectures. Such an IPC gain over "Gracemont" should make the "Skymont" E-core match the IPC of the "Sunny Cove" or "Willow Cove" P-cores powering the "Ice Lake" and "Tiger Lake" microarchitectures, respectively, which were both within the 90th percentile of the AMD "Zen 3" core in IPC.
Intel is achieving this double-digit IPC gain over "Crestmont" through an improved branch prediction unit, a broader 9-wide Decode unit compared to the 6-wide Decode unit of "Crestmont," and an 8-wide integer ALU, compared to 4 Integer ALU on its predecessor, a dependency optimization in the out-of-order engine, and deeper queuing across the engine. The E-cores might still be arranged in clusters that share an L2 cache among a certain number of cores.
View at TechPowerUp Main Site | Source