- Joined
- Oct 9, 2007
- Messages
- 47,438 (7.50/day)
- Location
- Hyderabad, India
System Name | RBMK-1000 |
---|---|
Processor | AMD Ryzen 7 5700G |
Motherboard | ASUS ROG Strix B450-E Gaming |
Cooling | DeepCool Gammax L240 V2 |
Memory | 2x 8GB G.Skill Sniper X |
Video Card(s) | Palit GeForce RTX 2080 SUPER GameRock |
Storage | Western Digital Black NVMe 512GB |
Display(s) | BenQ 1440p 60 Hz 27-inch |
Case | Corsair Carbide 100R |
Audio Device(s) | ASUS SupremeFX S1220A |
Power Supply | Cooler Master MWE Gold 650W |
Mouse | ASUS ROG Strix Impact |
Keyboard | Gamdias Hermes E2 |
Software | Windows 11 Pro |
Even as launch of the GK104-based GeForce GTX 680 nears, it's clear that it is emerging that it is not the fastest graphics processor in the GeForce Kepler family, if you sift through the specifications of the GK110 (yes, 110, not 100). Apparently, since GK104 meets or even exceeds the performance expectations of NVIDIA, the large-monolithic chip planned for this series, is likely codenamed GK110, and it's possible that it could get a GeForce GTX 700 series label.
3DCenter.org approximated the die size of the GK110 to be around 550 mm², 87% larger than that of the GK104. Since the chip is based on the 28 nm fab process, this also translates to a large increment in transistor count, up to 6 billion. The shader compute power is up by just around 30%, because the CUDA core count isn't a large increment (2000~2500 cores). The SMX (streaming multiprocessor 10) design could also face some changes. NVIDIA could prioritize beefing up other components than the CUDA cores, which could result in things such as a 512-bit wide GDDR5 memory interface. The maximum power consumption is estimated to be around 250~300 Watts. Its launch cannot be expected before August, 2012.
View at TechPowerUp Main Site
3DCenter.org approximated the die size of the GK110 to be around 550 mm², 87% larger than that of the GK104. Since the chip is based on the 28 nm fab process, this also translates to a large increment in transistor count, up to 6 billion. The shader compute power is up by just around 30%, because the CUDA core count isn't a large increment (2000~2500 cores). The SMX (streaming multiprocessor 10) design could also face some changes. NVIDIA could prioritize beefing up other components than the CUDA cores, which could result in things such as a 512-bit wide GDDR5 memory interface. The maximum power consumption is estimated to be around 250~300 Watts. Its launch cannot be expected before August, 2012.
View at TechPowerUp Main Site