- Joined
- Oct 9, 2007
- Messages
- 47,290 (7.53/day)
- Location
- Hyderabad, India
System Name | RBMK-1000 |
---|---|
Processor | AMD Ryzen 7 5700G |
Motherboard | ASUS ROG Strix B450-E Gaming |
Cooling | DeepCool Gammax L240 V2 |
Memory | 2x 8GB G.Skill Sniper X |
Video Card(s) | Palit GeForce RTX 2080 SUPER GameRock |
Storage | Western Digital Black NVMe 512GB |
Display(s) | BenQ 1440p 60 Hz 27-inch |
Case | Corsair Carbide 100R |
Audio Device(s) | ASUS SupremeFX S1220A |
Power Supply | Cooler Master MWE Gold 650W |
Mouse | ASUS ROG Strix Impact |
Keyboard | Gamdias Hermes E2 |
Software | Windows 11 Pro |
Intel is rumored to have shelved the iteration of its upcoming Z390 Express chipset as earlier publicized, the one which had certain new hardware features. It could now re-brand the existing Z370 Express as Z390 Express and probably bolster its reference design with heftier CPU VRM specifications, to cope better with its upcoming 8-core LGA1151 processors. The Z370 Express is similar in feature-set to the brink of being identical to its predecessor, the Z270 Express. This move could impact certain new hardware features that were on the anvil, such as significantly more USB 3.1 gen 2/gen1 ports directly from the PCH, integrated WiFi MAC, and Intel SmartSound technology, which borrowed certain concepts from edge-computing to implement native speech-to-text conversion directly on the chipset, for improved voice control latency and reduced CPU overhead.
The reasons behind this move could be a combination of last-minute cost-benefit analyses by Intel's bean-counters, and having to mass-produce Z390 Express on the busier-than-expected 14 nm silicon fabrication node, as opposed to current 300-series chipsets being built on the 22 nm node that's nearing the end of its life-cycle. Intel probably needed the switch to 14 nm for the significant increases in transistor-counts arising from the additional USB controllers, the WiFi MAC, and the SmartSound logic. Intel probably doesn't have the vacant 14 nm node capacity needed to mass-produce the Z390 yet, as its transition to future processes such as 10 nm and 7 nm are still saddled with setbacks and delays; and redesigning the Z390 (as we knew it) on 22 nm may have emerged unfeasible (i.e. the chip may have ended up too big and/or too hot). The Z390 Express chipset block-diagram, which we published in our older article has been quietly removed from Intel's website. It's also rumored that this move could force AMD to rethink its plans to launch its Z490 socket AM4 chipset.
View at TechPowerUp Main Site
The reasons behind this move could be a combination of last-minute cost-benefit analyses by Intel's bean-counters, and having to mass-produce Z390 Express on the busier-than-expected 14 nm silicon fabrication node, as opposed to current 300-series chipsets being built on the 22 nm node that's nearing the end of its life-cycle. Intel probably needed the switch to 14 nm for the significant increases in transistor-counts arising from the additional USB controllers, the WiFi MAC, and the SmartSound logic. Intel probably doesn't have the vacant 14 nm node capacity needed to mass-produce the Z390 yet, as its transition to future processes such as 10 nm and 7 nm are still saddled with setbacks and delays; and redesigning the Z390 (as we knew it) on 22 nm may have emerged unfeasible (i.e. the chip may have ended up too big and/or too hot). The Z390 Express chipset block-diagram, which we published in our older article has been quietly removed from Intel's website. It's also rumored that this move could force AMD to rethink its plans to launch its Z490 socket AM4 chipset.
View at TechPowerUp Main Site