- Joined
- Aug 19, 2017
- Messages
- 2,644 (0.99/day)
When the US decided to impose sanctions on all US-made technology use in foreign countries (China), the Chinese semiconductor manufacturing industry seemed at the time that it would just completely stop. Without the tools to manufacture silicon, Chinese manufacturers would need to turn to other countries to search for a possible solution. That, however, turned out impossible as the US administration has decided to stop the silicon from going into the hands of Chinese companies, by making a condition that any US-made technology can not get to China. Many of the parts for silicon manufacturing are designed in the US, so they have the power to restrict the use.
Today, in a surprising turn of events, we have information that Shanghai Micro Electronic Equipment (SMEE) has developed a deep ultraviolet (DUV) lithography scanner that is set for delivery in 2021. With a plan to deliver it in the fourth quarter of 2021, SMEE has designed this DUV scanner for the production of 28 nm node. While not being the most advanced node available to date, it is a significant start for Chinese technology independence. ASML, the producer of such scanners, used to be one of the few options there, however, it just gained a competitor. China will deliver its new silicon on a 28 nm process at the end of 2021. Pictured below, you can see how the scanner from SMEE looks like.
View at TechPowerUp Main Site
Today, in a surprising turn of events, we have information that Shanghai Micro Electronic Equipment (SMEE) has developed a deep ultraviolet (DUV) lithography scanner that is set for delivery in 2021. With a plan to deliver it in the fourth quarter of 2021, SMEE has designed this DUV scanner for the production of 28 nm node. While not being the most advanced node available to date, it is a significant start for Chinese technology independence. ASML, the producer of such scanners, used to be one of the few options there, however, it just gained a competitor. China will deliver its new silicon on a 28 nm process at the end of 2021. Pictured below, you can see how the scanner from SMEE looks like.
View at TechPowerUp Main Site