- Joined
- Oct 9, 2007
- Messages
- 47,230 (7.55/day)
- Location
- Hyderabad, India
System Name | RBMK-1000 |
---|---|
Processor | AMD Ryzen 7 5700G |
Motherboard | ASUS ROG Strix B450-E Gaming |
Cooling | DeepCool Gammax L240 V2 |
Memory | 2x 8GB G.Skill Sniper X |
Video Card(s) | Palit GeForce RTX 2080 SUPER GameRock |
Storage | Western Digital Black NVMe 512GB |
Display(s) | BenQ 1440p 60 Hz 27-inch |
Case | Corsair Carbide 100R |
Audio Device(s) | ASUS SupremeFX S1220A |
Power Supply | Cooler Master MWE Gold 650W |
Mouse | ASUS ROG Strix Impact |
Keyboard | Gamdias Hermes E2 |
Software | Windows 11 Pro |
AMD Ryzen 9 7950X 16-core processor exhibits some strange behavior with regards to the max boost frequency spread among its cores. A multi-chip module with two 8-core CCDs (CPU complex dies); we noticed early on in our review that the cores located in CCD-1 boost to a higher frequency than the ones in CCD-2, with differences as high as 300 MHz. CapFrameX noticed that when CCD-2 is disabled on a machine running Windows 11 22H2, the processor actually puts out higher gaming performance, by as much as 10%. This is mainly because the cores in CCD-2, with a lower maximum boost frequency no longer handle processing load from the game; and with CCD-2 disabled, CCD-1 has all of the processor's power budget—up to 230 W—to itself, giving it much higher boost residency across its 8 cores.
View at TechPowerUp Main Site | Source
View at TechPowerUp Main Site | Source