- Joined
- Oct 9, 2007
- Messages
- 47,324 (7.51/day)
- Location
- Hyderabad, India
System Name | RBMK-1000 |
---|---|
Processor | AMD Ryzen 7 5700G |
Motherboard | ASUS ROG Strix B450-E Gaming |
Cooling | DeepCool Gammax L240 V2 |
Memory | 2x 8GB G.Skill Sniper X |
Video Card(s) | Palit GeForce RTX 2080 SUPER GameRock |
Storage | Western Digital Black NVMe 512GB |
Display(s) | BenQ 1440p 60 Hz 27-inch |
Case | Corsair Carbide 100R |
Audio Device(s) | ASUS SupremeFX S1220A |
Power Supply | Cooler Master MWE Gold 650W |
Mouse | ASUS ROG Strix Impact |
Keyboard | Gamdias Hermes E2 |
Software | Windows 11 Pro |
Samsung on Wednesday announced mass-production of the world's first next-generation GDDR7 memory chips, and Ryan Smith from AnandTech scored a few technical details from the company. Apparently, the company's first production version of GDDR7 memory is built on the same D1z silicon foundry node as its 24 Gbps GDDR6 memory chip—the fastest GDDR6 chip in production. D1z is a 10 nm class foundry node that utilizes EUV lithography.
Smith also scored some electrical specs. The first-gen GDDR7 memory chip offers a data-rate of 32 Gbps at a DRAM voltage of 1.2 V, compared to the 1.35 V that some of the higher speed GDDR6 chips operate at. While the pJpb (pico-Joules per bit) is 7% higher than the current generation in absolute terms, for the 32 Gbps data-rate on offer, it is 20% lower compared to that of the 24 Gbps GDDR6 chip. Put simply, GDDR7 is 20% more energy efficient. Smith remarks that this energy-efficiency gain is purely architectural, and isn't a from any refinements to the D1z node. GDDR7 uses PAM3 signaling compared to the NRZ signaling of conventional GDDR6, and the PAM4 signalling of the GDDR6X non-JEDEC standard that NVIDIA co-developed with Micron Technology.
View at TechPowerUp Main Site | Source
Smith also scored some electrical specs. The first-gen GDDR7 memory chip offers a data-rate of 32 Gbps at a DRAM voltage of 1.2 V, compared to the 1.35 V that some of the higher speed GDDR6 chips operate at. While the pJpb (pico-Joules per bit) is 7% higher than the current generation in absolute terms, for the 32 Gbps data-rate on offer, it is 20% lower compared to that of the 24 Gbps GDDR6 chip. Put simply, GDDR7 is 20% more energy efficient. Smith remarks that this energy-efficiency gain is purely architectural, and isn't a from any refinements to the D1z node. GDDR7 uses PAM3 signaling compared to the NRZ signaling of conventional GDDR6, and the PAM4 signalling of the GDDR6X non-JEDEC standard that NVIDIA co-developed with Micron Technology.
View at TechPowerUp Main Site | Source