T0@st
News Editor
- Joined
- Mar 7, 2023
- Messages
- 2,592 (3.55/day)
- Location
- South East, UK
System Name | The TPU Typewriter |
---|---|
Processor | AMD Ryzen 5 5600 (non-X) |
Motherboard | GIGABYTE B550M DS3H Micro ATX |
Cooling | DeepCool AS500 |
Memory | Kingston Fury Renegade RGB 32 GB (2 x 16 GB) DDR4-3600 CL16 |
Video Card(s) | PowerColor Radeon RX 7800 XT 16 GB Hellhound OC |
Storage | Samsung 980 Pro 1 TB M.2-2280 PCIe 4.0 X4 NVME SSD |
Display(s) | Lenovo Legion Y27q-20 27" QHD IPS monitor |
Case | GameMax Spark M-ATX (re-badged Jonsbo D30) |
Audio Device(s) | FiiO K7 Desktop DAC/Amp + Philips Fidelio X3 headphones, or ARTTI T10 Planar IEMs |
Power Supply | ADATA XPG CORE Reactor 650 W 80+ Gold ATX |
Mouse | Roccat Kone Pro Air |
Keyboard | Cooler Master MasterKeys Pro L |
Software | Windows 10 64-bit Home Edition |
Semiconductor Manufacturing International Corp (SMIC) is preparing new semiconductor production lines at its Shanghai facilities according to a fresh Reuters report—China's largest contract chip maker is linked to next generation Huawei SoC designs, possibly 5 nm-based Kirin models. SMIC's newest Shanghai wafer fabrication site was an expensive endeavor—involving a $8.8 billion investment—but their flagship lines face a very challenging scenario with new phases of mass production. Huawei, a key customer, is expected to "upgrade" to a 5 nm process for new chip designs—their current flagship, Kirin 9000S, is based on a SMIC 7 nm node. Reuter's industry sources believe that the foundry's current stable of "U.S. and Dutch-made equipment" will be deployed to "produce 5-nanometer chips."
Revised trade rulings have prevented ASML shipping advanced DUV machinery to mainland China manufacturing sites—SMIC workers have reportedly already repurposed the existing inventory of lithography equipment for next-gen pursuits. Burn Lin (ex-TSMC), a renowned "chip guru," believes that it is possible to mass produce 5 nm product on slightly antiquated gear (previously used for 7 nm)—but the main caveats being increased expense and low yields. According to a DigiTimes Asia report, mass production of a 5 nm SoC on SMIC's existing DUV lithography would require four-fold patterning in a best case scenario.
View at TechPowerUp Main Site | Source
Revised trade rulings have prevented ASML shipping advanced DUV machinery to mainland China manufacturing sites—SMIC workers have reportedly already repurposed the existing inventory of lithography equipment for next-gen pursuits. Burn Lin (ex-TSMC), a renowned "chip guru," believes that it is possible to mass produce 5 nm product on slightly antiquated gear (previously used for 7 nm)—but the main caveats being increased expense and low yields. According to a DigiTimes Asia report, mass production of a 5 nm SoC on SMIC's existing DUV lithography would require four-fold patterning in a best case scenario.



View at TechPowerUp Main Site | Source