- Joined
- Oct 9, 2007
- Messages
- 47,285 (7.53/day)
- Location
- Hyderabad, India
System Name | RBMK-1000 |
---|---|
Processor | AMD Ryzen 7 5700G |
Motherboard | ASUS ROG Strix B450-E Gaming |
Cooling | DeepCool Gammax L240 V2 |
Memory | 2x 8GB G.Skill Sniper X |
Video Card(s) | Palit GeForce RTX 2080 SUPER GameRock |
Storage | Western Digital Black NVMe 512GB |
Display(s) | BenQ 1440p 60 Hz 27-inch |
Case | Corsair Carbide 100R |
Audio Device(s) | ASUS SupremeFX S1220A |
Power Supply | Cooler Master MWE Gold 650W |
Mouse | ASUS ROG Strix Impact |
Keyboard | Gamdias Hermes E2 |
Software | Windows 11 Pro |
Wieland AIO CPU cooler is a prototype closed-loop liquid CPU cooler that lacks a pump, or any form of active coolant flow between the heat-source (the CPU block), and the sink (the radiator). The cooler works on the principle of thermosiphon, where the temperature differential between the source and sink cause coolant flow. This is essentially how solar water heaters work, as they drive coolant (water) between the heating panels and a storage tank. It's not like the cooler is without any moving parts, the radiator still needs ventilation from fans.
Der8auer tested a prototype Wieland cooler, and compared its cooling performance to that of a typical 240 mm AIO CLC (with a pump), on a machine with an AMD Ryzen 9 7950X processor with a 170 W TDP. During a 20-minute Cinebench R23 multithreaded stress test, the 240 mm AIO held temperatures to around 70 °C, while the Wieland AIO managed 78 °C. The power draw with the regular 240 mm AIO was higher, as the processor probably utilized the lower temperature to hold onto higher boost frequencies.
View at TechPowerUp Main Site | Source
Der8auer tested a prototype Wieland cooler, and compared its cooling performance to that of a typical 240 mm AIO CLC (with a pump), on a machine with an AMD Ryzen 9 7950X processor with a 170 W TDP. During a 20-minute Cinebench R23 multithreaded stress test, the 240 mm AIO held temperatures to around 70 °C, while the Wieland AIO managed 78 °C. The power draw with the regular 240 mm AIO was higher, as the processor probably utilized the lower temperature to hold onto higher boost frequencies.
View at TechPowerUp Main Site | Source