TheLostSwede
News Editor
- Joined
- Nov 11, 2004
- Messages
- 18,043 (2.44/day)
- Location
- Sweden
System Name | Overlord Mk MLI |
---|---|
Processor | AMD Ryzen 7 7800X3D |
Motherboard | Gigabyte X670E Aorus Master |
Cooling | Noctua NH-D15 SE with offsets |
Memory | 32GB Team T-Create Expert DDR5 6000 MHz @ CL30-34-34-68 |
Video Card(s) | Gainward GeForce RTX 4080 Phantom GS |
Storage | 1TB Solidigm P44 Pro, 2 TB Corsair MP600 Pro, 2TB Kingston KC3000 |
Display(s) | Acer XV272K LVbmiipruzx 4K@160Hz |
Case | Fractal Design Torrent Compact |
Audio Device(s) | Corsair Virtuoso SE |
Power Supply | be quiet! Pure Power 12 M 850 W |
Mouse | Logitech G502 Lightspeed |
Keyboard | Corsair K70 Max |
Software | Windows 10 Pro |
Benchmark Scores | https://valid.x86.fr/yfsd9w |
Kioxia Corporation, a world leader in memory solutions, today announced the development of OCTRAM (Oxide-Semiconductor Channel Transistor DRAM), a new type of 4F2 DRAM, comprised of an oxide-semiconductor transistor that has a high ON current, and an ultra-low OFF current, simultaneously. This technology is expected to realize a low power DRAM by bringing out the ultra-low leakage property of the InGaZnO transistor. This was first announced at the IEEE International Electron Devices Meeting (IEDM) held in San Francisco, CA on December 9, 2024. This achievement was jointly developed by Nanya Technology and Kioxia Corporation. This technology has the potential to lower power consumption in a wide range of applications, including AI and post-5G communication systems, and IoT products.
The OCTRAM utilizes a cylinder-shaped InGaZnO vertical transistor (Fig.1) as a cell transistor. This design enables the adaptation of a 4F2 DRAM, which offers significant advantages in memory density compared to the conventional silicon-based 6F2 DRAM.
The InGaZnO vertical transistor achieves a high ON current of over 15μA/cell (1.5 x 10-5 A/cell) and an ultra-low OFF current below 1aA/cell (1.0 x 10-18 A/cell) through device and process optimization (Fig.2). In the OCTRAM structure, the InGaZnO vertical transistor is integrated on top of a high aspect ratio capacitor (capacitor-first process). This arrangement allows for the decoupling of the interaction between the advanced capacitor process and the InGaZnO performance (Fig.3).
InGaZnO is a compound of In (indium), Ga (gallium), Zn (zinc), and O (oxygen)
View at TechPowerUp Main Site | Source
The OCTRAM utilizes a cylinder-shaped InGaZnO vertical transistor (Fig.1) as a cell transistor. This design enables the adaptation of a 4F2 DRAM, which offers significant advantages in memory density compared to the conventional silicon-based 6F2 DRAM.
The InGaZnO vertical transistor achieves a high ON current of over 15μA/cell (1.5 x 10-5 A/cell) and an ultra-low OFF current below 1aA/cell (1.0 x 10-18 A/cell) through device and process optimization (Fig.2). In the OCTRAM structure, the InGaZnO vertical transistor is integrated on top of a high aspect ratio capacitor (capacitor-first process). This arrangement allows for the decoupling of the interaction between the advanced capacitor process and the InGaZnO performance (Fig.3).
InGaZnO is a compound of In (indium), Ga (gallium), Zn (zinc), and O (oxygen)
- This announcement has been prepared to provide information on our business and does not constitute or form part of an offer or invitation to sell or a solicitation of an offer to buy or subscribe for or otherwise acquire any securities in any jurisdiction or an inducement to engage in investment activity nor shall it form the basis of or be relied on in connection with any contract thereof.
- Information in this document, including product prices and specifications, content of services and contact information, is correct on the date of the announcement but is subject to change without prior notice.
View at TechPowerUp Main Site | Source