• Welcome to TechPowerUp Forums, Guest! Please check out our forum guidelines for info related to our community.

Quobly Announces Key Milestone for Fault-tolerant Quantum Computing

TheLostSwede

News Editor
Joined
Nov 11, 2004
Messages
17,725 (2.42/day)
Location
Sweden
System Name Overlord Mk MLI
Processor AMD Ryzen 7 7800X3D
Motherboard Gigabyte X670E Aorus Master
Cooling Noctua NH-D15 SE with offsets
Memory 32GB Team T-Create Expert DDR5 6000 MHz @ CL30-34-34-68
Video Card(s) Gainward GeForce RTX 4080 Phantom GS
Storage 1TB Solidigm P44 Pro, 2 TB Corsair MP600 Pro, 2TB Kingston KC3000
Display(s) Acer XV272K LVbmiipruzx 4K@160Hz
Case Fractal Design Torrent Compact
Audio Device(s) Corsair Virtuoso SE
Power Supply be quiet! Pure Power 12 M 850 W
Mouse Logitech G502 Lightspeed
Keyboard Corsair K70 Max
Software Windows 10 Pro
Benchmark Scores https://valid.x86.fr/yfsd9w
Quobly, a leading French quantum computing startup, has reported that FD-SOI technology can serve as a scalable platform for commercial quantum computing, leveraging traditional semiconductor manufacturing fabs and CEA-Leti's R&D pilot line.

The semiconductor industry has played a pivotal role in enabling classical computers to scale at cost; it has the same transformative potential for quantum computers, making them commercially scalable and cost competitive. Silicon spin qubits are excellent for achieving fault-tolerant, large-scale quantum computing, registering clock speeds in the µsec range, fidelity above 99% for one and two-qubit gate operations and incomparably small unit cell sizes (in the hundredths of 100 nm²).




To capitalize on decades of semiconductor infrastructure investments, Quobly has adopted a fabless model. It focuses on FD-SOI, a commercially available CMOS technology manufactured by global leaders like STMicroelectronics, GlobalFoundries, and Samsung, as a platform for quantum computing.

Quobly's work, reported on December 9th, 2024 at IEDM, addresses the critical challenges for scaling quantum systems. With CEA-Leti, CEA-IRIG and CNRS, Quobly has demonstrated the key building blocks for a quantum computer leveraging commercial FD-SOI:

Low-temperature operations and characterization of their digital and analog performances, adhering to circuit design guidelines
Single qubit operations using hole and electron spin qubits using the CEA-Leti's R&D pilot line. This ambipolar platform optimizes system performance, leveraging electrons' long coherence times for memory, as well as the holes' strong spin-orbit interaction for fast data processing
Charge control in commercial GF 22FDX to further define a standard cell for a two-qubit gate

Key achievements include:
  • Cryogenic Control Electronics: Voltage gain up to 75dB, noise levels of 10-11 V²∙μm²/Hz, and threshold voltage variability of 1.29 mV∙μm.
  • Ambipolar Spin Qubits: Co-integration of hole and electron qubits on FD-SOI technology, achieving 1μs manipulation speed for holes and 40μs coherence time (Hahn echo) for electrons.
  • Two-Qubit Gate Standard Cell: Demonstration of double quantum dot operations with commercial FD-SOI.A Step Towards Commercial Quantum Systems

This work positions FD-SOI as essential for scalable quantum processors and establishes Quobly as a leader in cost-efficient, fault-tolerant quantum computing. By co-integrating quantum and classical components on the same platform, Quobly is shaping scalable QSoC architectures.

View at TechPowerUp Main Site | Source
 
Top