• Welcome to TechPowerUp Forums, Guest! Please check out our forum guidelines for info related to our community.

Samsung Announces Availability of Its Leading-Edge 2.5D Integration H-Cube Solution

btarunr

Editor & Senior Moderator
Staff member
Joined
Oct 9, 2007
Messages
47,244 (7.54/day)
Location
Hyderabad, India
System Name RBMK-1000
Processor AMD Ryzen 7 5700G
Motherboard ASUS ROG Strix B450-E Gaming
Cooling DeepCool Gammax L240 V2
Memory 2x 8GB G.Skill Sniper X
Video Card(s) Palit GeForce RTX 2080 SUPER GameRock
Storage Western Digital Black NVMe 512GB
Display(s) BenQ 1440p 60 Hz 27-inch
Case Corsair Carbide 100R
Audio Device(s) ASUS SupremeFX S1220A
Power Supply Cooler Master MWE Gold 650W
Mouse ASUS ROG Strix Impact
Keyboard Gamdias Hermes E2
Software Windows 11 Pro
Samsung Electronics, a world leader in advanced semiconductor technology, today announced that it has developed Hybrid-Substrate Cube (H-Cube) technology, its latest 2.5D packaging solution specialized for semiconductors for HPC, AI, data center, and network products that require high-performance and large-area packaging technology.

"H-Cube solution, which is jointly developed with Samsung Electro-mechanics (SEMCO) and Amkor Technology, is suited to high-performance semiconductors that need to integrate a large number of silicon dies," said Moonsoo Kang, senior vice president and Head of Foundry Market Strategy Team at Samsung Electronics. "By expanding and enriching the foundry ecosystem, we will provide various package solutions to find a breakthrough in the challenges our customers are facing."



"In today's environment where system integration is increasingly required and substrate supplies are constrained, Samsung Foundry and Amkor Technology have successfully co-developed H-Cube to overcome these challenges," said JinYoung Kim, senior vice president of Global R&D Center at Amkor Technology. "This development lowers barriers to entry in the HPC/AI market and demonstrates successful collaboration and partnership between the foundry and outsourced semiconductor assembly and test (OSAT) company."

H-Cube Structure and Features
2.5D packaging enables logic chips or high-bandwidth memory (HBM) to be placed on top of a silicon interposer in a small form factor. Samsung's H-Cube technology features a hybrid substrate combined with a fine-pitch substrate which is capable of fine bump connection, and a High-Density Interconnection (HDI) substrate, to implement large sizes into 2.5D packaging.

With the recent increase in specifications required in the HPC, AI, and networking application market segments, large-area packaging is becoming important as the number and size of chips mounted in one package increases or high-bandwidth communication is required. For attachment and connection of silicon dies including the interposer, fine-pitch substrates is essential but prices rise significantly following an increase in size.

When integrating six or more HBMs, the difficulty in manufacturing the large-area substrate increases rapidly, resulting in decreased efficiency. Samsung solved this problem by applying a hybrid substrate structure in which HDI substrates that are easy to implement in large-area is overlapped under a high-end fine-pitch substrate.

By decreasing the pitch of solder ball, which electrically connects the chip and the substrate, by 35% compared to the conventional ball pitch, the size of fine-pitch substrate can be minimized, while adding HDI substrate (module PCB) under the fine-pitch substrate to secure connectivity with the system board.

In addition, to enhance the reliability of the H-Cube solution, Samsung applied its proprietary signal/power integrity analysis technology that can stably supply power while minimizing the signal loss or distortion when stacking multiple logic chips and HBMs.

Looking ahead, in cooperation with its ecosystem partners, Samsung will hold its 3rd Annual 'Samsung Advanced Foundry Ecosystem (SAFETM) Forum' virtually on November 17 (PST).

View at TechPowerUp Main Site
 
Joined
Mar 13, 2021
Messages
472 (0.35/day)
Processor AMD 7600x
Motherboard Asrock x670e Steel Legend
Cooling Silver Arrow Extreme IBe Rev B with 2x 120 Gentle Typhoons
Memory 4x16Gb Patriot Viper Non RGB @ 6000 30-36-36-36-40
Video Card(s) XFX 6950XT MERC 319
Storage 2x Crucial P5 Plus 1Tb NVME
Display(s) 3x Dell Ultrasharp U2414h
Case Coolermaster Stacker 832
Power Supply Thermaltake Toughpower PF3 850 watt
Mouse Logitech G502 (OG)
Keyboard Logitech G512
Is this any different than what was used to make the amd fury card?
From what I am reading an looking at its just a refinement mainly of what we had so in theory where there is smaller dies involved you can stack the HBM even closer than before making substrates smaller in turn in theory decreasing their cost.

Until HBM becomes adopted enmass I dont see it being that impactful but it means smaller dies get more benefit.
 
Top