News Posts matching #SMIC

Return to Keyword Browsing

Global Top 10 Foundries' Total Revenue Grew by 6% QoQ for 3Q22, but Foundry Industry's Revenue Performance Will Enter Correction Period in 4Q22

According to TrendForce's research, the total revenue of the global top 10 foundries rose by 6% QoQ to US$35.21 billion for 3Q22 as the release of the new iPhone series during the second half of the year generated significant stock-up activities across Apple's supply chain. However, the global economy shows weak performances, and factors such as China's policy on containing COVID-19 outbreaks and high inflation continue to impact consumer confidence. As a result, peak-season demand in the second half of the year has been underwhelming, and inventory consumption is proceeding slower than anticipated. This situation has led to substantial downward corrections to foundry orders as well. For 4Q22, TrendForce forecasts that the total revenue of the global top 10 foundries will register a QoQ decline, thereby terminating the boom of the past two years—when there was an uninterrupted trend of QoQ revenue growth.

Regarding individual foundries' performances in 3Q22, the group of the top five was led by TSMC, followed by Samsung, UMC, GlobalFoundries, and SMIC. Their collective global market share (in revenue terms) came to 89.6%. Most foundries were directly impacted by clients slowing down their stock-up activities or significantly correcting down their orders. Only TSMC was able to make a notable gain due to Apple's strong stock-up demand for the SoCs deployed in this year's new iPhone models. TSMC saw its revenue rise by 11.1% QoQ to US$20.16 billion, and the corresponding market share expanded to 56.1%. The growth was mainly attributed to the ≤7 nm nodes, whose share in the foundry's revenue had kept climbing and reached 54% in the third quarter. Conversely, Samsung actually experienced a slight QoQ drop of 0.1% in foundry revenue even though it had also benefited from the component demand related to the new iPhone series. Partially impacted by the weakening of the Korean won, Samsung's market share fell to 15.5%.

2Q22 Output Value Growth at Top 10 Foundries Falls to 3.9% QoQ, Says TrendForce

According to TrendForce research, due to steady weakening of overall demand for consumer electronics, inventory pressure has increased among downstream distributors and brands. Although there are still sporadic shortages of specific components, the curtain has officially fallen on a two-year wave of shortages in general, and brands have gradually suspended stocking in response to changes in market conditions. However, stable demand for automotive and industrial equipment is key to supporting the ongoing growth of foundry output value. At the same time, since the creation of a marginal amount of new capacity in 2Q22 led to growth in wafer shipments and a price hike for certain wafers, this drove output value among top ten foundries to reach US$33.20 billion in 2Q22. Quarterly growth fell to 3.9% on a weakening consumer market.

A prelude to inventory correction was officially revealed in 3Q22. In addition to intensifying severity in the initial wave of order slashing for LDDI/TDDI, and TV SoC, diminishing order volume also extended to non-Apple smartphone APs and peripheral IC PMIC, CIS, and consumer electronics PMICs, and mid-to-low-end MCUs, posing a challenge for foundry capacity utilization. However, the launch of the new iPhone in 3Q22 is expected to prop up a certain amount of stocking momentum for the sluggish market. Therefore, top ten foundry revenue in 3Q22 is expected to maintain a growth trend driven by high-priced processes and quarterly growth rate is expected to be slightly higher than in 2Q22.

US Strengthens China Export Bans, Limiting Access to Manufacturing Technology

The US Department of Commerce is in the process of increasing the stranglehold in tech exports directed to Chinese shores. The move is being made through the delivery of letters to US-based technology companies - namely KLA Corp, Lam Research Corp and Applied Materials Inc. - ordering them to stop the export of machines and equipment that can be used for sub-14 nm manufacturing. The move by the Department of Commerce only has validity for the companies that have been served by such a letter - at least until the Department codifies its newest regulations.

This means that only sellers with approved export licenses can keep doing business with Beijing, thus limiting the US companies China can work with as it aims to achieve at least a degree of self-sufficiency in the latest chipmaking tech. Perhaps the decision has come too late, however, as China's mainstay silicon manufacturing, SMIC, already manufactures chips at the 14 nm process (chips that have been deployed in China's Tinahu Light supercomputer already) and has even showcased manufacturing capability in the 7 nm field. It pays to remember that the US already had applied similar restrictions on equipment experts to China for the better part of two years - which apparently did little to stem China's capability to create increasingly denser semiconductor designs.

Chinese SMIC Ships 7 nm Chips, Reportedly Copied TSMC's Design

The Chinese technology giant, SMIC, has managed to advance its semiconductor manufacturing technology and shipped the first 7 nm silicon manufactured on China's soil. According to analyst firm TechInsights, who examined the 7 nm Bitcoin mining SoC made for MinerVa firm, there are doubts that SMIC 7 nm process is somewhat similar to TSMC's 7 nm process. Despite having no access to advanced semiconductor manufacturing tools, and US restrictions placed around it, SMIC has managed to produce what resembles an almost perfect 7 nm node. This could lead to a true 7 nm logic and memory bitcells sometimes in the future, as the node advances in SMIC's labs.

Having done an in-depth die analysis, the TechInsights report indicates that TSMC, Intel, and Samsung have a more advanced 7 nm node and are two nodes ahead of the Chinese SMIC. The results are not great regarding the economics and yield of this SMIC 7 nm process. While we have no specific data, the report indicates that the actual working chips made with older DUV tools are not perfect. This is not a problem for the Chinese market as it seeks independence from Western companies and technology. However, introducing a China-made 7 nm chip is more critical as it shows that the country can manufacture advanced nodes with restrictions and sanctions in place. The MinerVa SoC die and the PCB that houses those chips are pictured below.

Off-season Offsets Wafer Pricing Increase, 1Q22 Foundry Output Value Up 8.2% QoQ, Says TrendForce

According to TrendForce research, although demand for consumer electronics remains weak, structural growth demand in the semiconductor industry including for servers, high-performance computing, automotive, and industrial equipment has not flagged, becoming a key driver for medium and long term foundry growth. At the same time, due to robust wafer production at higher pricing in 1Q22, quarterly output value hit a new high for the 11th consecutive quarter, reaching US$31.96 billion, 8.2% QoQ, marginally less than the previous quarter. In terms of ranking, the biggest change is Nexchip surpassed Tower at the ninth position.

TSMC's across the board wafer hikes in 4Q21 on batches primarily produced in 1Q22 coupled with sustained strong demand for high-performance computing and better foreign currency exchange rates pushed TSMC's 1Q22 revenue to $17.53 billion, up 11.3% QoQ. Quarterly revenue growth by node was generally around 10% and the 7/6 nm and 16/12 nm processes posted the highest growth rate due to small expansions in production. The only instance of revenue decline came at the 5/4 nm process due to Apple's iPhone 13 entering the off season for production stocking.

Top 10 Foundries Post Record 4Q21 Performance for 10th Consecutive Quarter at US$29.55B, Says TrendForce

The output value of the world's top 10 foundries in 4Q21 reached US$29.55 billion, or 8.3% growth QoQ, according to TrendForce's research. This is due to the interaction of two major factors. One is limited growth in overall production capacity. At present, the shortage of certain components for TVs and laptops has eased but there are other peripheral materials derived from mature process such as PMIC, Wi-Fi, and MCU that are still in short supply, precipitating continued fully loaded foundry capacity. Second is rising average selling price (ASP). In the fourth quarter, more expensive wafers were produced in succession led by TSMC and foundries continued to adjust their product mix to increase ASP. In terms of changes in this quarter's top 10 ranking, Nexchip overtook incumbent DB Hitek to clinch 10th place.

TrendForce believes that the output value of the world's top ten foundries will maintain a growth trend in 1Q22 but appreciation in ASP will still be the primary driver of said growth. However, since there are fewer first quarter working days in the Greater China Area due to the Lunar New Year holiday and this is the time when some foundries schedule an annual maintenance period, 1Q22 growth rate will be down slightly compared to 4Q21.

8-inch Wafer Capacity Remains Tight, Shortages Expected to Ease in 2H23, Says TrendForce

From 2020 to 2025, the compound annual growth rate (CAGR) of 12-inch equivalent wafer capacity at the world's top ten foundries will be approximately 10% with the majority of these companies focusing on 12-inch capacity expansion, which will see a CAGR of approximately 13.2%, according to TrendForce's research. In terms of 8-inch wafers, due to factors such as difficult to obtain equipment and whether capacity expansion is cost-effective, most fabs can only expand production slightly by means of capacity optimization, equating to a CAGR of only 3.3%. In terms of demand, the products primarily derived from 8-inch wafers, PMIC and Power Discrete, are driven by demand for electric vehicles, 5G smartphones, and servers. Stocking momentum has not fallen off, resulting in a serious shortage of 8-inch wafer production capacity that has festered since 2H19. Therefore, in order to mitigate competition for 8-inch capacity, a trend of shifting certain products to 12-inch production has gradually emerged. However, if shortages in overall 8-inch capacity is to be effectively alleviated, it is still necessary to wait for a large number of mainstream products to migrate to 12-inch production. The timeframe for this migration is estimated to be close to 2H23 into 2024.

UMC is Feeling the Pressure from Chinese Foundries

The chip shortage discussion has been very focused on TSMC for some reason and although the company is without a doubt the world's leading foundry, the company is making its living from being a cutting edge foundry, whereas much of the components that there's a shortage of are made on far older nodes at many different foundries. Taiwanese UMC is one of the foundries that makes many of the automotive semiconductors, as well as key components when it comes to power regulation and is considered the world's third largest foundry.

Until 2018, UMC was competing head on with TSMC, although the company was always about a node behind TSMC, which led to a management team decision to slow down its node transition and instead to focus on speciality technologies. The company has done well in this niche, with a revenue of about US$6.2 billion in 2020. However, UMC is starting to feel the pressure from its competitors in China, as the PRC government is making a push for local production of local IC designs.

AMD Expected to See 65 Percent Growth Rate in Sales for 2021, Intel Down One Percent

According to an industry report by IC Insights, AMD will see a yearly growth rate of no less than 65 percent this year, compared to 2020, whereas Intel is expected to have a slightly negative growth rate of one percent. The report includes the top 25 semiconductor sales leaders, ranked by growth rate, although it should be pointed out that some of them are foundries and not just semiconductor companies.

AMD is closely followed by MediaTek, which is expected to reach a 60 percent growth rate this year, followed by Nvidia at 54 percent and Qualcomm and 51 percent growth. The only surprise in the top five is PRC based SMIC, which saw a 39 percent growth this year, despite, or maybe because of the US sanctions against various Chinese IC makers.

Foundry Revenue for 2Q21 Reaches Historical High Once Again with 6% QoQ Growth Thanks to Increased ASP and Persistent Demand, Says TrendForce

The panic buying of chips persisted in 2Q21 owing to factors such as post-pandemic demand, industry-wide shift to 5G telecom technology, geopolitical tensions, and chronic chip shortages, according to TrendForce's latest investigations. Chip demand from ODMs/OEMs remained high, as they were unable to meet shipment targets for various end-products due to the shortage of foundry capacities. In addition, wafers inputted in 1Q21 underwent a price hike and were subsequently outputted in 2Q21. Foundry revenue for the quarter reached US$24.407 billion, representing a 6.2% QoQ increase and yet another record high for the eighth consecutive quarter since 3Q19.

Foundry Revenue Projected to Reach Historical High of US$94.6 Billion in 2021 Thanks to High 5G/HPC/End-Device Demand, Says TrendForce

As the global economy enters the post-pandemic era, technologies including 5G, WiFi6/6E, and HPC (high-performance computing) have been advancing rapidly, in turn bringing about a fundamental, structural change in the semiconductor industry as well, according to TrendForce's latest investigations. While the demand for certain devices such as notebook computers and TVs underwent a sharp uptick due to the onset of the stay-at-home economy, this demand will return to pre-pandemic levels once the pandemic has been brought under control as a result of the global vaccination drive. Nevertheless, the worldwide shift to next-gen telecommunication standards has brought about a replacement demand for telecom and networking devices, and this demand will continue to propel the semiconductor industry, resulting in high capacity utilization rates across the major foundries. As certain foundries continue to expand their production capacities this year, TrendForce expects total foundry revenue to reach a historical high of US$94.6 billion this year, an 11% growth YoY.

Revenue of Top 10 Foundries Expected to Increase by 20% YoY in 1Q21 in Light of Fully Loaded Capacities, Says TrendForce

Demand in the global foundry market remains strong in 1Q21, according to TrendForce's latest investigations. As various end-products continue to generate high demand for chips, clients of foundries in turn stepped up their procurement activities, which subsequently led to a persistent shortage of production capacities across the foundry industry. TrendForce therefore expects foundries to continue posting strong financial performances in 1Q21, with a 20% YoY growth in the combined revenues of the top 10 foundries, while TSMC, Samsung, and UMC rank as the top three in terms of market share. However, the future reallocation of foundry capacities still remains to be seen, since the industry-wide effort to accelerate the production of automotive chips may indirectly impair the production and lead times of chips for consumer electronics and industrial applications.

TSMC has been maintaining a steady volume of wafer inputs at its 5 nm node, and these wafer inputs are projected to account for 20% of the company's revenue. On the other hand, owing to chip orders from AMD, Nvidia, Qualcomm, and MediaTek, demand for TSMC's 7 nm node is likewise strong and likely to account for 30% of TSMC's revenue, a slight increase from the previous quarter. On the whole, TSMC's revenue is expected to undergo a 25% increase YoY in 1Q21 and set a new high on the back of surging demand for 5G, HPC, and automotive applications.

China's SMIC Announces N+1 Node Tape-Out for 7 nm Silicon

SMIC is taking immense strides in bridging the gap between China's in-house silicon manufacturing capability compared to the usual Taiwanese or US-based options. Despite its ties to the Chinese government, which led for a US blacklisting of the company amidst the current China-US trade-war, SMIC has definitely achieved a benchmark with its 7 nm tape-out. This was achieved after a number of funding rounds, some of them with the power of the Chinese state behind them. While the blacklisting definitely hurt the company, they still have access to ASML's semiconductor manufacturing equipment, so while the rope may be tight, it likely isn't suffocating.

The node's first production tape-out is for an ASIC (Application-Specific Integrated Circuit) design for Innosilicon, which specializes in cryptocurrency mining, purpose-built chips. SMIC states that the new N+1 process can offer up to 20% boosted performance at the same clocks and core complexity compared to their 12 nm designs, which is subpar compared to other player's "7 nm class nodes", such as GloFo's 12 LP+, Samsung's 8LPP and TSMC's N7 non-EUV nodes (TSMC, for instance, offered a 20% performance boost between the 10 nm and 7 nm nodes). SMIC's manufacturing looks better in other metrics, though: power requirements can be reduced by 57% at the same TDP and complexity, and the transistor density can be increased by up to 2.7 times, (the "up to" depends on specific semiconductor structures). This is SMIC is only targeting - for now - low-power and low-cost devices with the N+1 nodes.

China Forecast to Represent 22% of the Foundry Market in 2020, says IC Insights

IC Insights recently released its September Update to the 2020 McClean Report that presented the second of a two-part analysis on the global IC foundry industry and included a look at the pure-play foundry market by region.

China was responsible for essentially all of the total pure-play foundry market increase in 2018. In 2019, the U.S./China trade war slowed China's economic growth but its foundry marketshare still increased by two percentage points to 21%. Moreover, despite the Covid-19 shutdown of China's economy earlier this year, China's share of the pure-play foundry market is forecast to be 22% in 2020, 17 percentage points greater than it registered in 2010 (Figure 1).

China Could Reject NVIDIA-Arm Deal, Predicts Former Lenovo Chief Engineer

In big corporate mergers and acquisitions involving multi-national corporations, money is the easy part, with the hard part being competition regulators of major markets giving their assent. The NVIDIA-Arm deal could get entangled in the US-China tech trade-war, with Beijing likely to use its approval of the deal as a bargaining chip against the US. Former Lenovo chief engineer Ni Guangnan predicts that the Chinese government's position would be to try and fight the deal on anti-trust grounds, as it could create a monopoly of chip-design tools. China's main concern, however, would be Arm IP falling into the hands of a US corporation, the California-based NVIDIA, which would put the IP under US export-control regulations.

Both Arm and NVIDIA announced an agreement for the latter to acquire Arm from SoftBank in a deal valued at USD $40 billion. NVIDIA CEO has been quoted as calling it the "deal of the century," as it would put NVIDIA in control of the biggest CPU machine architecture standard after Intel's x86, letting it scale the IP from low-power edge SoCs, to large data-center processors. Chinese regulators could cite recent examples of US export controls harming the Chinese tech industry, such as technology bans over Huawei and SMIC, in its action against the NVIDIA-Arm deal. Arm's 200-odd Chinese licensees have shipped over 19 billion chips based on the architecture as of mid-September 2020.

US Government Could Blacklist Chinese Chipmaker SMIC

The Trump administration has reportedly been considering adding to Chinese chipmaker SMIC (Semiconductor Manufacturing International Corporation) to the trade blacklist of Chinese companies, restricting the company of doing any business with the United States and/or with any of its affiliates. The original report comes from Reuters and it states that the move came from Pentagon after considering whatever SMIC should be placed on a blacklist. It is so far unclear if other US agencies support the decision, however, it should be public in the near future. The company has received the news on Saturday and it was "in complete shock" about the decision. Shortly after the news broke, SMIC stock has fallen as much as 15% amid the possible blacklist. If SMIC would like to continue working with American suppliers, it would need to seek a difficult-to-obtain license from the government.

Update 28th September: The United States government hasofficially imposed sanctions on the Chinese chipmaker SMIC. The company is now under US sanctions and is placed on a trade blacklist.

Qualcomm Could Deliver Chips to Huawei

In the ave of the news that Trump administration has forbidden TSMC to have Huawei as its customer, Huawei seems to be exploring new options for sourcing the best performing mobile processors. As the company has turned to the Chinese SMIC semiconductor factory, it still needs a backup plan in the case of Chinese semiconductor manufacturing flops. So to combat US sanctions, Huawei will use already made chips form the US company - Qualcomm. By sourcing the processors from Qualcomm, Huawei is losing some benefits of customs design like better system integration, however, it will gain quite powerful mobile processors. As Qualcomm is known for providing the fastest processors for Android smartphones, Huawei has ensured that it remains competitive. Qualcomm is reportedly now negotiating with the US government about delivering the chips to Huawei, and if it is allowed, Qualcomm will gain a big customer.

TSMC to Stop Orders from Huawei in September

TSMC, one of the largest semiconductor manufacturing foundries, has officially confirmed that it will stop all orders from Chinese company Huawei Technologies. The Taiwanese silicon manufacturer has decided to comply with US regulations and will officially stop processing orders for Huawei on September 14th of this year. Precisely, the company was receiving orders from HiSilicon, a subsidiary of Huawei Technologies that focuses on creating custom silicon. Under the new regulation by the US, all non-US companies must apply for a license to ship any American-made technology to Huawei. Being that many American companies like KLA Corporation, Lam Research, and Applied Materials ship their tools to many manufacturing facilities, it would be quite difficult for Huawei to manufacture its silicon anywhere. That is why Huawei has already placed orders over at Chinese SMIC foundry.

SMIC Makes a Debut on China STAR Market

Chinese silicon manufacturer Semiconductor Manufacturing International (SMIC) has officially made a debut on the Chinese science and technology innovation board (STAR) as of today. After submitting a proposal 16 days ago, SMIC already managed to start trading its shares on the STAR board of China's Shanghai Stock Exchange (SSE). Why this is important you might wonder? Well now SMIC can collect more funds and invest that into node development, so the Chinese semiconductor industry is about to boom. Being the biggest semiconductor manufacturer in China, SMIC takes the lead and every development from the company is big for the Chinese semiconductor industry.

SMIC is currently trading on the Stock Exchange of Hong Kong (HKEX) where it used to trade exclusively. With SSE now included, it is easier for the company to trade. SMIC also submitted a proposal last year in May to start trading on the New York Stock Exchange (NYSE) so it can get the attention of Western investors. If the company manages to successfully raise all the funds for node development, then the Chinese semiconductor industry is about to flourish.

China's SMIC Looking for $2.8 billion Funding Round via Shanghai

As the US stranglehold on Huawei keeps on tightening its grip, China's government is keen on both investing more heavily into in-country semiconductor manufacturing that can become a viable alternative to Huawei as a source a silicon, as well as decrease the country's dependence on Western or Western-tied companies. The country has already developed promising alternatives to foreign DRAM solutions via Xi'an UniIC Semiconductors and Yangtze Memory Technologies (YMTC). Now, following a previously-successful funding round held in Hong Kong (worth some $2.2 billion injected last month), China's largest contract chipmaker Semiconductor Manufacturing International Corporation (SMIC) is looking for an additional $2.8 billion funding round via Shanghai.

SMIC is currently years behind TSMC, the current benchmark when it comes to semiconductor manufacturing. For now, SMIC is only able to provide 14 nm product designs - and even in that node, silicon is being quoted as having as much as a 70% defect-rate on any given wafer produced by the company (they've already started 14 nm production of Huawei's low-cost Kirin 710 chipset). At any rate, sources point towards a 6,000 monthly wafer production capacity within SMIC, a very, very low number that fails to meet any current demand (TSMC, for scale, are quoted as producing as many as 110,000 7 nm wafers per month). It's definitely an uphill battle, but SMIC counts with the might of the Chinese government through its sails - so while the waters might not be smooth, investment rounds such as these two (which amount to some $5 billion capital injection in two months) will be sure to help grease the engines for china's semiconductor expansion as much as possible.

SMIC Begins Mass-Production of 14nm FinFET SoCs for Huawei HiSilicon

Semiconductor Manufacturing International Corporation (SMIC), the state-backed Mainland Chinese semiconductor foundry, announced that it commenced mass-production of 14 nm FinFET SoCs for Huawei's HiSilicon subsidiary, a mere one month since Huawei shifting chip orders from TSMC to it. The company is manufacturing Kirin 710A is a revision of the original Kirin 710 SoC from 2018, built on SMIC's 14 nm node. The 4G-era SoC is capable of powering mid-range smartphones for Huawei's Honor brand, and uses an Arm big.LITTLE setup of Cortex A53 and Cortex A57 cores. This represents a major milestone not just for SMIC, but also Huawei, which has seen the company's isolation from cutting-edge overseas fabs such as TSMC. Much of Huawei's fate is riding on the success of SMIC's next-generation N+1 node, which purportedly offers a 57 percent energy-efficiency gain over 14 nm FinFET, rivaling sub-10 nm nodes such as 7 nm; enabling Huawei to build 5G-era SoCs.

Huawei Moves 14 nm Silicon Orders from TSMC to SMIC

Huawei's subsidiary, HiSilicon, which designs the processors used in Huawei's smartphones and telecommunications equipment, has reportedly moved its silicon orders from Taiwan Semiconductor Manufacturing Company (TSMC) to Semiconductor Manufacturing International Corporation (SMIC), according to DigiTimes. Why Huawei decided to do is move all of the 14 nm orders from Taiwanese foundry to China's largest silicon manufacturing fab, is to give itself peace of mind if the plan of the US Government goes through to stop TSMC from supplying Huawei. At least for the mid-tier chips built using 14 nm node, Huawei would gain some peace as a Chinese fab is a safer choice given the current political situation.

When it comes to the high-end SoCs built on 7 nm, and 5 nm in the future, it is is still uncertain how will Huawei behave in this situation, meaning that if US cuts off TSMC's supply to Huawei, they will be forced to use SMIC's 7 nm-class N+1 node instead of anything from TSMC. Another option would be Samsung, but it is a question will Huawei put itself in risk to be dependant on another foreign company. The lack of 14 nm orders from Huawei will not be reflecting much on TSMC, because whenever someone decides to cut orders, another company takes up the manufacturing capactiy. For example, when Huawei cut its 5 nm orders, Apple absorbed by ordering more capacity. When Huawei also cut 7 nm orders, AMD and other big customers decided to order more, making the situation feel like there is a real fight for TSMC's capacity.
Silicon Wafer

SMIC 7nm-class N+1 Foundry Node Going Live by Q4-2020

China's state-backed SMIC (Semiconductor Manufacturing International Corporation) has set an ambitious target of Q4-2020 for its 7 nanometer-class N+1 foundry node to go live, achieving "small scale production," according to a cnTechPost report. The company has a lot of weight on its shoulders as geopolitical hostility between the U.S. and China threatens to derail the country's plans to dominate 5G technology markets around the world. The SMIC N+1 node is designed to improve performance by 20%, reduce chip power consumption by 57%, reduce logic area by 63%, and reduce SoC area by 55%, in comparison to the SMIC's 14 nm FinFET node, Chinese press reports citing a statement from SMIC's co-CEO Dr. Liang Mengsong.

Dr. Liang confirmed that the N+1 7 nm node and its immediate successor will not use EUV lithography. N+1 will receive a refinement in the form of N+2, with modest chip power consumption improvement goals compared to N+1. This is similar to SMIC's 12 nm FinFET node being a refinement of its 14 nm FinFET node. Later down its lifecycle, once the company has got a handle of its EUV lithography equipment, N+2 could receive various photomasks, including a switch to EUV at scale.

China-based SMIC to Start Manufacture of 14 nm-class Chips in 2H 2019

As R&D costs for new, smaller manufacturing nodes grow at unprecedented rates across the industry, a new player is set to enter the 14 nm process manufacture competition: China-based SMIC (Semiconductor Manufacturing International Corporation). The company is looking to throw its hat on the lucrative 14 nm process, filling its offerings portfolio under the 28 nm it currently offers as its denser process.

The company expects its 95% yield rate to offer its customers a trusted platform that might help it increase revenue for further investment on its 10 nm and 7 nm EUV nodes, which the company is pursuing (despite other industry veterans, such as former AMD-manufacturing arm GLOBALFOUNDRIES having ceased development on). Manufacturing technology that's competitive with the western world's, and that's developed in-country, is paramount for China's intention of reducing its dependence of foreign technology, which is why this is such a big step for the company and the company's aspirations.
Return to Keyword Browsing
May 21st, 2024 15:25 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts