My take is mixed. AMD were first to the game on having uneven cores but seem largely forgiven for it by the TPU community (who happen to be mostly Ryzen owners). Their CCX issues, led AMD to add a mode to change scheduling so games would use the correct core's on some CPU's.
Because the review industry is so influential and they have put a lot of focus on things like cinebench in reviews, Intel having not have the ability to build a CPU with just p-cores to outperform AMD decided to go in a new direction with the E cores. I was definitely sceptical when I first read about them, I wont pretend I wasnt.
However I am now starting to see how they can be beneficial. There is some value in to having cores designed for one task, and cores designed for another task. I treat E cores as a background service set of cores, and P cores as interactive cores aka games. I treat things like compiling and encoding as a service type workload in case there is confusion on that from this post.
As I am now using one of these CPU's the 13700k, this has led to me learning a ton of stuff about the Windows CPU scheduler, especially the hidden power schemes settings which allow heavy manipulation of CPU behaviour as well as scheduling of processes, sadly the TPU community hasnt taken to the little bits I shared so I stopped sharing, however there is some value to be had with the ability to schedule certain things to cores that are more suited to the task.
However I do also have criticism, one could argue if I had a 12 P core CPU instead of 8+8, I could still do what I am doing by e.g. assigning all background stuff, and browsing to the last 4 cores, and reserving first 8 cores for gaming, it would likely have just a good result consider also as still same thread count with HTT for the background stuff, the main losses is I would lose automatic E core scheduling which Windows can take care off (so more manual affinity) and also lower performance on heavy threaded tasks like compiling and software encoding, but the reality is I no longer software encode due to the energy crisis, and I dont compile anything on this PC. I do agree with the points that these are cinebench CPU's, because the review industry now focuses so much on these type of benches, Intel have started lumping in these E cores, I have little doubt this is the main reason they exist, for marketing. Isnt it odd the lowest end chips have no E cores and by coincidence they are the same chip's not sent to reviewers.
Also P cores by default park on these hybrid CPU's, I tweaked this to keep the 2 preferred cores always unparked at no visible power draw, but it was noticeable when I tested keeping them all unparked by default, on my highest performance profile the P cores are always unparked in case of potential issues in some applications and games. Am still investigating impact of core parking on scheduling, there is likely a latency penalty of some sort in specific workloads though, hence me keeping them all unparked on my highest performance profile.