- Joined
- Feb 9, 2009
- Messages
- 1,618 (0.28/day)
That's why I was trying to correct you, GTG isn't the longest, it's the shortest...that's why companies measure it that way. A full transition takes considerably longer than the response time as advertised, that's why I call it a meaningless number. The best way to put it is this: The "response" time a monitor has is the best case scenario, even then it's only a partial transition. It is kinda like comparing a monoprice cable to a monster cable. The monoprice cable will give you a best case estimate, the monster gives you a worst case number. That's why the monster cables are so stupidly expensive, they are rated based on the worst case while most companies use best case. They still aren't worth full price for their high end, but that's why they charge as much as they do.
LCDs have gotten faster over the last decade, but honestly my old Samsung LCD (my first one) is pretty much the same as the last one I had and is pretty much the same as the one I have now (when I'm running 60hz). The blur largely comes from the refresh rate, not the response time. LIke I said, if your screen refreshes every 16ms, unless your response time is *slower* than that it won't matter. When you get to 120hz the response time becomes more important because it refreshes every 8ms, which if your response for a full transition is more than 8ms THEN you'll get blur based on response time. Same with 144hz, that refreshes at something like 6ms (don't quote me, not 100%) which makes the full transition even more important. But 144hz monitors usually are 1ms panels, so even if it's 4 times as long for a full transition (not GTG) that's 4-6ms and is still under what the refresh time is.
The bigger reason we get motion blur is the permanance thing, a frame stays on the screen until it's replaced, and when it's replaced it isn't from a blank screen, it's from whatever was there before. So a blue pixel might stay the same or change, a green pixel might stay the same or change...but all that blurs. If you go from black to color it doesn't blur. That's why lightboost works, the backlight flashes 1.3ms after a screen refresh and wipes the screen back to black before the next frame is drawn. That means every transition is black to color and there isn't any blur from color to color transitions. It's like a CRT, CRTs projected image...they never stayed. If your signal cut out the screen just went blank...on an LCD the screen would just "freeze".
As a side note: never game with VSYNC on, it adds major input lag. It's usually worse than what comes with an IPS monitor. I don't have a chart handy, but go look up some of the g-sync articles (like the anandtech review) and I think they have pictures explaining how vsync works. Even G-sync, which is far superior still adds input lag. That's why you want the framerate of the refresh rate, so you don't get tearing and don't need vsync...
i have no choice (well i do but dont want to buy a new monitor yet), i'm ok with 60hz vsync, i have methods to reduce input lag & am comfortable with it at the moment (there was a time... around before catalyst 9.7 where vsync was causing EXTREME input lag on my 4870x2, back then i had to keep it off)
ya motion blur can only be reduced by having black flickers, i'm a big fan of how multiple companies are doing this, anyone can experiment with those LED xmas lights vs old style ones or their phone, it's very noticeable how if you move the lights around or smoothly move your head around, you can see the flicker but also a very crisp movement of the lights, while if you do the same with a non flickering lcd or even a piece of white paper, it will have motion blur