- Joined
- Aug 19, 2017
- Messages
- 2,865 (1.04/day)
Scientists from Beijing University have developed the world's first two-dimensional gate-all-around field-effect transistor (GAAFET), establishing a new performance benchmark in domestic semiconductor design. The design, documented in Nature, represents a difference in transistor architecture that could reshape the future of Chinese microelectronics design. Given the reported characteristic of 40% higher performance and 10% improved efficiency compared to the TSMC 3 nm N3 node, it looks rather promising. The research team, headed by Professors Peng Hailin and Qiu Chenguang, engineered a "wafer-scale multi-layer-stacked single-crystalline 2D GAA configuration" that demonstrated superior performance metrics when benchmarked against current industry leaders. The innovation leverages bismuth oxyselenide (Bi₂O₂Se), a novel semiconductor material that maintains exceptional carrier mobility at sub-nanometer dimensions—a critical advantage as the industry struggles to push angstrom-era semiconductor nodes.
"Traditional silicon-based transistors face fundamental physical limitations at extreme scales," explained Professor Peng, who characterized the technology as "the fastest, most efficient transistor ever developed." The 2D GAAFET architecture circumvents the mobility degradation that plagues silicon in ultra-small geometries, allowing for continued performance scaling beyond current nodes. The development comes during China's intensified efforts to achieve semiconductor self-sufficiency, as trade restrictions have limited access to advanced lithography equipment and other critical manufacturing technologies. Even with China developing domestic EUV technology, it is still not "battle" proven. Rather than competing directly with established fabrication processes, the Beijing team has pioneered an entirely different technological approach—what Professor Peng described as "changing lanes entirely" rather than seeking incremental improvements, where China can not compete in the near term.
View at TechPowerUp Main Site | Source
"Traditional silicon-based transistors face fundamental physical limitations at extreme scales," explained Professor Peng, who characterized the technology as "the fastest, most efficient transistor ever developed." The 2D GAAFET architecture circumvents the mobility degradation that plagues silicon in ultra-small geometries, allowing for continued performance scaling beyond current nodes. The development comes during China's intensified efforts to achieve semiconductor self-sufficiency, as trade restrictions have limited access to advanced lithography equipment and other critical manufacturing technologies. Even with China developing domestic EUV technology, it is still not "battle" proven. Rather than competing directly with established fabrication processes, the Beijing team has pioneered an entirely different technological approach—what Professor Peng described as "changing lanes entirely" rather than seeking incremental improvements, where China can not compete in the near term.

View at TechPowerUp Main Site | Source