I wrote a very long and complex answer, but found in order to make it coherent it had too much stuff along the lines of the article, so it's getting saved for another day, as the OP mighty feel "hey I said that" too many times. Here's a couple of short bits.
I think making a super-fast ARM will be an issue as it's a complicated business once you get to the very high performance area. However software issues are as much of a pain (i.e. making best use of the hardware someone has). Apple could be helped here by having less combinations.
The x86 instruction set is best thought of as a compressed RISC instruction set, so you get better use out of memory, memory bandwidth and caches. That's a plus. (Although ARM seem to sometimes add new instruction sets on Tuesdays... well -ish.)
ARM is a teeny company, it would be "interesting" if someone unexpected bought them out of petty cash and changed the business model completely (it's not like they make so much money it would be a big dent). BTW I considered using a PA-Risc CPU back in the day, remember them... unfortunate for some... (Apple bought them and killed the CPU line.) I believe Apple has an "Architecture" ARM license, which if open-ended (date-wise) would certainly help with any ARM issues.
It's been a long time since Intel last did anything extremely clever (Pentium 4 BTW). Can they make a big jump again? (Plus this time not be screwed by the process technology not hitting the promised 7-8GHz and taking too much power. Although strictly some parts were double clocked so going that fast.)
Final thought - how much better would it be not to spend a ton of effort on the CPU's internal architecture but to speed everything that's an actual roadblock up, especially the off-chip stuff? ( E.g. more memory and I/O interfaces.) Is having a ton of chip-PCB contacts and a few extra PCB layers that much of an issue at the high end of PCs these days? (Me and Seymour, separated at birth...)
*** Oh, my posts got combined, this was supposed to be a completely separate answer to one thing, sorry...
I did.
It would apply if RISC CPUs were faster, but more expensive. They used to be faster. At some point they have become slower.
I am not buying "but that's because of R&D money" argument.
As for having savings in the server market, by selling desktop chips: heck, just have a look at AMD. The market is so huge, you can have decent R&D while having only tiny fraction of the market.
The whole "RISC beats CISC" was largely based on CISC being much harder to scale up by implementing multiple ops ahead, at once, since instruction set was so rich. But hey, as transistor counts went up, suddenly it was doable, on the other hand, RISCs could not go much further ahead in the execution queue, and, flop, no RISCs.
And, curiously, no EPIC took off either.
Note I edited the second part of this answer as I wrote it super-quickly and combined some stuff. Hopefully it's more correct now. The stuff above this line hasn't been changed.
x86 used to be CISC. Following some analysis (this is the very short version) of compilers it was found they used very few of the instructions (less true today BTW). So some groups tried to make CPUs just executing those instructions, but doing it very quickly (and often very messily, but that's another story). These out-performed the contemporary CISC CPUs (e.g. 386, 68030). This led to WindowsNT supporting several of them (so you could run full/standard WinNT on a DEC Alpha, for example).
Intel's (really excellent BTW) solution was the 486. This was a RISC-ish x86 (edit IMHO). It worked by reading the CISC instructions from memory and (edit) executing the simple ones in a single clock (I cocked this up in the first pass as I wrote this reply way too quickly and combined two generations, apologies). This boosted x86 processing speed up to the same territory as the RISC chips, who declined after that. Also WinNT became x86 only.
Aside - I was looking at designing a board using the Fairchild Clipper RISC chip. (IMHO the only one with a complete and sophisticated architecture - the patents made a lot of money for many years after the chips stopped production, as everyone used the technology.) This beat-up the previous Intel 386 chip very well, but the 486 came along and was a problem for it, so the project died (probably a good idea, O/S licencing for RISC was a nightmare back then). (The Clipper also suffered from Fairchild's process technology, with the caches in separate chips.)
Anyway all x86 for a long time have RISC cores (edit, but the next big change was somewhat later converting all instructions to micro-ops) and basically use the x86 instruction set as a compressed instruction set, so you can store more work in less bytes of memory, requiring less memory fetches and less cache space to store the same amount of functionality. The RISC chips would need more space all through the system due to using larger instruction (BTW ARM's later Thumb set of alternate instructions was intended to shrink the instruction size). As processor speed gets so far ahead of external memory speed (where is can take vast numbers of clocks to do a memory fetch) this is even more important. Of course the catch is you need some very clever instruction decoders for x86, but that has had vast amounts of work optimising it.
The original ARM CPU was mostly interesting as, following on from path of the Mostek 6502, Acorn designed a simple instruction set (with some annoyances) and used a minimal number of transistors in the design, when most others were using lots more. This kept the chip price well down, plus also allowed a low enough complexity for them to actually design a working CPU. (The 6502 was probably the biggest early home computing CPU, it was an 8-bit microprocessor designed with a lot less transistors than its competition, so was noticeably cheaper back when CPUs were really expensive - Acorn, the A in ARM, used the 6502 in their BBC and Electron computers.)
The big problem with the ARM CPUs was, IMHO, the instruction set wasn't great, so they've been adding assorted stuff ever since (e.g. Thumb, basically a complete different set of instructions).
The brilliant thing about ARM (over time) is they licensed it cheaply and at levels down to the gates, the synthesis files or the architecture (no-one else would give you that sort of stuff - well, Intel let AMD make exact x86 copies for a while back when the market was a lot smaller). People loved it. The down-side is they weren't making billions selling chips so are a much much smaller company, even now, than most people realise. (It is a bit of a risk that someone awkward could buy them.)