Framework Dives Deep into Desktop Model's Deployment of Ryzen AI Max
We dedicated a lot of our launch presentation of Framework Desktop to the Ryzen AI Max processor it uses, and for a good reason. These truly unique, ultra-high-performance parts are the culmination of decades of technology and architecture investments that AMD has made, going all the way back to their acquisition of ATI in 2006. For our first technical deep dive on Framework Desktop, we're going to go even deeper into Ryzen AI Max and what makes it a killer processor for gaming, workstation, and AI workloads.
What makes Ryzen AI Max special is a combination of three elements: full desktop-class Zen 5 CPU cores, a massive 40-CU Radeon RDNA 3.5 GPU, and a giant 256-bit LPDDR5x memory bus to feed the two, supporting up to 128 GB of memory. Chips and Cheese did an excellent technical overview of the processor with AMD that goes even deeper on this, and we'll pull out some of the highlights along with our own insights. We'll start with the CPUs. Ryzen AI Max supports up to 16 CPU cores split across two 4 nm FinFET dies that AMD calls CCDs. These dies are connected together using an extremely wide, low power, low latency bus across the package substrate. The CPUs are full Zen 5 cores with 512-bit FPUs and support for AVX-512, a vector processing instruction set otherwise only available on Intel's top end server CPUs. We're excited for you to see the multicore performance numbers these CPUs can do in our upcoming press review cycle!
What makes Ryzen AI Max special is a combination of three elements: full desktop-class Zen 5 CPU cores, a massive 40-CU Radeon RDNA 3.5 GPU, and a giant 256-bit LPDDR5x memory bus to feed the two, supporting up to 128 GB of memory. Chips and Cheese did an excellent technical overview of the processor with AMD that goes even deeper on this, and we'll pull out some of the highlights along with our own insights. We'll start with the CPUs. Ryzen AI Max supports up to 16 CPU cores split across two 4 nm FinFET dies that AMD calls CCDs. These dies are connected together using an extremely wide, low power, low latency bus across the package substrate. The CPUs are full Zen 5 cores with 512-bit FPUs and support for AVX-512, a vector processing instruction set otherwise only available on Intel's top end server CPUs. We're excited for you to see the multicore performance numbers these CPUs can do in our upcoming press review cycle!