News Posts matching #CoWoS-R

Return to Keyword Browsing

NVIDIA Revises "Blackwell" Architecture Production Roadmap for More Complex Packaging

According to a well-known industry analyst, Ming-Chi Kuo, NVIDIA has restructured its "Blackwell" architecture roadmap, emphasizing dual-die designs using CoWoS-L packaging technology. The new roadmap eliminates several single-die products that would have used CoWoS-S packaging, changing NVIDIA's manufacturing strategy. The 200 Series will exclusively use dual-die designs with CoWoS-L packaging, featuring the GB200 NVL72 and HGX B200 systems. Notably absent is the previously expected B200A single-die variant. The 300 Series will include both dual-die and single-die options, though NVIDIA and cloud providers are prioritizing the GB200 NVL72 dual-die system. Starting Q1 2025, NVIDIA will reduce H series production, which uses CoWoS-S packaging, while ramping up 200 Series production. This transition indicates significantly decreased demand for CoWoS-S capacity through 2025.

While B300 systems using single-die CoWoS-S are planned for 2026 mass production, the current focus remains on dual-die CoWoS-L products. From TSMC's perspective, the transition between Blackwell generations requires minimal process adjustments, as both use similar front-end-of-line processes with only back-end-of-line modifications needed. Supply chain partners heavily dependent on CoWoS-S production face significant impact, reflected in recent stock price corrections. However, NVIDIA maintains this change reflects product strategy evolution rather than market demand weakness. TSMC continues expanding CoWoS-R capacity while slowing CoWoS-S expansion, viewing AI and high-performance computing as sustained growth drivers despite these packaging technology transitions.

TSMC Unveils Next-Generation HBM4 Base Dies, Built on 12 nm and 5 nm Nodes

During the European Technology Symposium 2024, TSMC has announced its readiness to manufacture next-generation HBM4 base dies using both 12 nm and 5 nm nodes. This significant development is expected to substantially improve the performance, power consumption, and logic density of HBM4 memory, catering to the demands of high-performance computing (HPC) and artificial intelligence (AI) applications. The shift from a traditional 1024-bit interface to an ultra-wide 2048-bit interface is a key aspect of the new HBM4 standard. This change will enable the integration of more logic and higher performance while reducing power consumption. TSMC's N12FFC+ and N5 processes will be used to produce these base dies, with the N12FFC+ process offering a cost-effective solution for achieving HBM4 performance and the N5 process providing even more logic and lower power consumption at HBM4 speeds.

The company is collaborating with major HBM memory partners, including Micron, Samsung, and SK Hynix, to integrate advanced nodes for HBM4 full-stack integration. TSMC's base die, fabricated using the N12FFC+ process, will be used to install HBM4 memory stacks on a silicon interposer alongside system-on-chips (SoCs). This setup will enable the creation of 12-Hi (48 GB) and 16-Hi (64 GB) stacks with per-stack bandwidth exceeding 2 TB/s. TSMC's collaboration with EDA partners like Cadence, Synopsys, and Ansys ensures the integrity of HBM4 channel signals, thermal accuracy, and electromagnetic interference (EMI) in the new HBM4 base dies. TSMC is also optimizing CoWoS-L and CoWoS-R for HBM4 integration, meaning that massive high-performance chips are already utilizing this technology and getting ready for volume manufacturing.
Return to Keyword Browsing
Jan 23rd, 2025 21:44 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts