The Mionix Castor Pro is equipped with the PixArt PAW3370. According to specifications, the 3370 is capable of up to 19,000 CPI, as well as a maximum tracking speed of 400 IPS, which equals 10.16 m/s. Out of the box, five pre-defined CPI steps are available: 400, 800, 1600, 3200, and 19,000.
CPI Accuracy
"CPI" (short for counts per inch) describes the number of counts registered by the mouse if it is moved exactly an inch. There are several factors (firmware, mounting height of the sensor not meeting specifications, mouse feet thickness, mousing surface, among others) which may contribute to nominal CPI not matching actual CPI. It is impossible to always achieve a perfect match, but ideally, nominal and actual CPI should differ as little as possible. In this test, I'm determining whether this is the case or not. However, please keep in mind that said variance will still differ from unit to unit, so your mileage may vary.
I've restricted my testing to the four most common CPI steps, which are 400, 800, 1600, and 3200. As you can see, deviation is exclusively positive and minor, which is a very good result.
Motion Delay
"Motion delay" encompasses all kinds of sensor lag. Any further sources of input delay will not be recorded in this test. The main thing I'll be looking for in this test is sensor smoothing, which describes an averaging of motion data across several capture frames in order to reduce jitter at higher CPI values, increasing motion delay along with it. The goal here is to have as little smoothing as possible. As there is no way to accurately measure motion delay absolutely, it can only be done by comparison with a control subject that has been determined to have the lowest possible motion delay. In this case, the control subject is a G403, whose 3366 has no visible smoothing across the entire CPI range. Note that the G403 is moved first and thus receives a slight head start.
First, I'm looking at two xCounts plots—generated at 1600 and 19,000 CPI—to quickly gauge whether there is any smoothing, which would be indicated by any visible "kinks." As you can see, no such kinks are on display in the second plot, which strongly suggests there not being any smoothing.
In order to determine motion delay, I'm looking at xSum plots generated at 1600 and 19,000 CPI. The line further to the left denotes the sensor with less motion delay. As you can see, there is no difference in motion delay at both 1600 CPI and 19,000 CPI, which is expected given the lack of smoothing. Upon enabling smoothing by turning on "ripple control," a motion delay differential of 7 ms can be observed at 19,000 CPI.
Speed-related Accuracy Variance (SRAV)
What people typically mean when they talk about "acceleration" is speed-related accuracy variance (or SRAV for short). It's not about the mouse having a set amount of inherent positive or negative acceleration, but about the cursor not traveling the same distance if the mouse is moved the same physical distance at different speeds. The easiest way to test this is by comparison with a control subject that is known to have very low SRAV, which in this case is the G403. As you can see from the plot, no displacement between the two cursor paths can be observed, which confirms that SRAV is very low.
Perfect Control Speed
Perfect Control Speed (or PCS for short) is the maximum speed up to which the mouse and its sensor can be moved without the sensor malfunctioning in any way. I've only managed to hit a measly 5 m/s, which is within the proclaimed PCS range and causes no observable sensor malfunction.
Polling Rate Stability
All of the available polling rate settings (125, 250, 500, and 1000 Hz) look and perform fine. Polling stability is unaffected by any of the available RGB lighting effects.
Paint Test
This test is used to indicate any potential issues with angle snapping (non-native straightening of linear motion) and jitter, along with any sensor lens rattle. As you can see, no issues with angle snapping can be observed. No jitter is visible at 1600 CPI and 3200 CPI. 19,000 CPI shows major jitter, which is expected given the lack of smoothing. Upon enabling "ripple control," jitter is lessened yet still significant. Lastly, there is no lens movement.
Lift-off Distance
The Castor Pro offers two pre-defined LOD levels to choose from, along with the ability to perform a manual calibration. Using the "Low" preset, the sensor does not track at a height of 1 DVD (<1.2 mm). Set to "High," the sensor does track at a height of 1 DVD, but not at a height of 2 DVDs (1.2 mm<x<2.4 mm, with x being LOD height). Keep in mind that LOD may vary slightly depending on the mousing surface (pad) it is being used on.
Click Latency
Since mechanical switches are being used for the buttons in most computer mice, debouncing is required in order to avoid unintended double clicks. Debouncing typically adds a delay (along with any potential processing delay), which shall be referred to as click latency. As there is no way to measure said delay directly, it has to be done by comparing it to a control subject, which in this case is the Logitech G203. Using the latest firmware, click latency has been measured to be roughly +3.0 ms when compared to the SteelSeries Ikari, which is considered as the baseline with 0 ms, with standard deviation being 0.61 ms. Please keep in mind that the measured value is not the absolute click latency. Comparison data comes from this thread as well as my own testing, using qsxcv's program.