Team Group MP34 M.2 NVMe SSD 512 GB Review 14

Team Group MP34 M.2 NVMe SSD 512 GB Review

Write Intensive Usage »

IO Latency

In this section, we take a closer look at the IO latencies of our SSDs, which helps quantify the time it takes for a data transfer to travel through the OS and to the SSD controller, get executed, and report its completion back to the application. The numbers presented are the 99th percentile, recording an upper latency limit (=worst case) you can expect from the drive with the given IO load. The 99th percentile was chosen to eliminate outliers caused by random events, like OS processor scheduling and background processes using up CPU time. Latency is an important factor for enterprise sectors that need to achieve certain quality-of-service levels, but ends up playing an important role to us enthusiasts as well. Our goal here is to identify bottlenecks in the controller or flash-cell-erase process.

4K Random Read Latency
512K Sequential Read Latency


512K Sequential Write Latency


Mixed Accesses Patterns

Our final synthetic test workload examines IO performance with various mixed read/write ratios. On the horizontal axis, we start with a 100% read (0% write) operation on the left, moving through various read/write ratios until we reach 100% write (0% read) on the right. The 99% ratio values are especially important data points here since it's rare to only send read or write operations to a drive. It is much more common to have reads and writes interspaced in between, one source of which is disk "noise" created by the operating system or background programs. The other read/write ratios are useful as they help determine what performance you can expect from various application scenarios.

Next Page »Write Intensive Usage
View as single page
Nov 26th, 2024 03:37 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts