News Posts matching #SoC

Return to Keyword Browsing

PC Market Returns to Growth in Q1 2024 with AI PCs to Drive Further 2024 Expansion

Global PC shipments grew around 3% YoY in Q1 2024 after eight consecutive quarters of declines due to demand slowdown and inventory correction, according to the latest data from Counterpoint Research. The shipment growth in Q1 2024 came on a relatively low base in Q1 2023. The coming quarters of 2024 will see sequential shipment growth, resulting in 3% YoY growth for the full year, largely driven by AI PC momentum, shipment recovery across different sectors, and a fresh replacement cycle.

Lenovo's PC shipments were up 8% in Q1 2024 off an easy comparison from last year. The brand managed to reclaim its 24% share in the market, compared to 23% in Q1 2023. HP and Dell, with market shares of 21% and 16% respectively, remained flattish, waiting for North America to drive shipment growth in the coming quarters. Apple's shipment performance was also resilient, with the 2% growth mainly supported by M3 base models.

AMD Extends Leadership Adaptive SoC Portfolio with New Versal Series Gen 2 Devices Delivering End-to-End Acceleration for AI-Driven Embedded Systems

AMD today announced the expansion of the AMD Versal adaptive system on chip (SoC) portfolio with the new Versal AI Edge Series Gen 2 and Versal Prime Series Gen 2 adaptive SoCs, which bring preprocessing, AI inference, and postprocessing together in a single device for end-to-end acceleration of AI-driven embedded systems.

These initial devices in the Versal Series Gen 2 portfolio build on the first generation with powerful new AI Engines expected to deliver up to 3x higher TOPs-per-watt than first generation Versal AI Edge Series devicesi, while new high-performance integrated Arm CPUs are expected to offer up to 10x more scalar compute than first gen Versal AI Edge and Prime series devicesii.

SiFive Unveils the HiFive Premier P550 Out-of-Order RISC-V Development Board

Today at Embedded World, SiFive, Inc., the pioneer and leader of RISC-V computing, unveiled its new state-of-the-art RISC-V development board, the HiFive Premier P550. The board will be available for large-scale deployment through Arrow Electronics so developers around the world can test and develop new RISC-V applications like machine vision, video analysis, AI PC and others, allowing them to use AI and other cutting-edge technologies across many different market segments.

With a quad-core SiFive Performance P550 processor, the HiFive Premier P550 is the highest performance RISC-V development board in the industry, and the latest in the popular HiFive family. Designed to meet the computing needs of modern workloads, the out-of-order P550 core delivers superior compute density and performance in an energy-efficient area footprint. Furthermore, the modular design of the HiFive Premier P550, which includes a replaceable system-on-module (SOM) board, gives developers the flexibility they need to tailor their designs.

Imagination's new Catapult CPU is Driving RISC-V Device Adoption

Imagination Technologies today unveils the next product in the Catapult CPU IP range, the Imagination APXM-6200 CPU: a RISC-V application processor with compelling performance density, seamless security and the artificial intelligence capabilities needed to support the compute and intuitive user experience needs for next generation consumer and industrial devices.

"The number of RISC-V based devices is skyrocketing with over 16Bn units forecast by 2030, and the consumer market is behind much of this growth" says Rich Wawrzyniak, Principal Analyst at SHD Group. "One fifth of all consumer devices will have a RISC-V based CPU by the end of this decade. Imagination is set to be a force in RISC-V with a strategy that prioritises quality and ease of adoption. Products like APXM-6200 are exactly what will help RISC-V achieve the promised success."

Arm China Develops NPU Accelerator for AI, Targeting Domestic CPUs

Arm China is making strides in the AI accelerator market with its new neural processing unit (NPU) called Zhouyi. The company aims to integrate the NPU into low-cost domestic CPUs, potentially giving it an edge over competitors like AMD and Intel. Initially a part of Arm Holdings, which licensed IP in China, Arm China took on a new strategy of developing its own IP specifically for Chinese customers a few years ago. While the company does not develop high-performance general-purpose cores, its Zhouyi NPU could become a fundamental building block for affordable processors. A significant step forward is the upcoming addition of an open-source driver for Zhouyi to the Linux kernel. This will make the IP easy to program for software developers, increasing its appeal to chip designers.

Being an open-source driver, the integration in the Linux kernel brings assurance to developers that Zhouyi NPU could be the first in many generations from Arm China. While Zhouyi may not directly compete with offerings from AMD or Intel, its potential for widespread adoption in millions of devices could help Arm China acquire local customers with their IP. The project, which began three years ago with a kernel-only driver, has since evolved into a full driver stack. There is even a development kit board called EAIDK310, powered by Rockwell SoC and Zhouyi NPU, which is available on Aliexpress and Amazon. The integration of AI accelerator technology into the Linux ecosystem is a significant development, though there is still work to be done. Nonetheless, Arm China's Zhouyi NPU and open-source driver are essential to making AI capabilities more accessible and widely available in the domestic Chinese market.

Google Launches Arm-Optimized Chrome for Windows, in Time for Qualcomm Snapdragon X Elite Processors

Google has just released an Arm-optimized version of its popular Chrome browser for Windows PCs. This new version is designed to take full advantage of Arm-based devices' hardware and operating system, promising users a faster and smoother browsing experience. The Arm-optimized Chrome for Windows has been developed in close collaboration with Qualcomm, ensuring that Chrome users get the best possible experience on current Arm-compatible PCs. Hiroshi Lockheimer, Senior Vice President at Google, stated, "We've designed Chrome browser to be fast, secure, and easy to use across desktops and mobile devices, and we're always looking for ways to bring this experience to more people." Early testers of the Arm-optimized Chrome have reported significant performance improvements compared to the x86-emulated version. The new browser is rolling out starting today and will be available on existing Arm devices, including PCs powered by Snapdragon 8cx, 8c, and 7c processors.

Shortly, Chrome will receive an even more performant chip boost with Qualcomm's upcoming Snapdragon X Elite SoC launch. Cristiano Amon, President and CEO of Qualcomm, expressed his excitement about the collaboration, saying, "As we enter the era of the AI PC, we can't wait to see Chrome shine by taking advantage of the powerful Snapdragon X Elite system." Qualcomm's Snapdragon X Elite devices are expected to hit the market in mid-2024 with "dramatic performance improvement in the Speedometer 2.0 benchmark" on reference hardware. Being one of the most essential applications, getting a native Chrome build to run on Windows-on-Arm is a significant step for the platform, promising more investment from software makers.

MediaTek Licenses NVIDIA GPU IP for AI-Enhanced Vehicle Processors

NVIDIA has been offering its GPU IP for more than a decade now ever since the introduction of Kepler uArch, and its IP has had relatively low traction in other SoCs. However, that trend seems to be reaching an inflection point as NVIDIA has given MediaTek a license to use its GPU IP to produce the next generation of processors for the auto industry. The newest MediaTek Dimensity Auto Cockpit family consists of CX-1, CY-1, CM-1, and CV-1, where the CX-1 targets premium vehicles, CM targets medium range, and CV targets lower-end vehicles, probably divided by their compute capabilities. The Dimensity Auto Cockpit family is brimming with the latest technology, as the processor core of choice is an Armv9-based design paired with "next-generation" NVIDIA GPU IP, possibly referring to Blackwell, capable of doing ray tracing and DLSS 3, powered by RTX and DLA.

The SoC is supposed to integrate a lot of technology to lower BOM costs of auto manufacturing, and it includes silicon for controlling displays, cameras (advanced HDR ISP), audio streams (multiple audio DSPs), and connectivity (WiFi networking). Interestingly, the SKUs can play movies with AI-enhanced video and support AAA gaming. MediaTek touts the Dimensity Auto Cockpit family with fully local AI processing capabilities, without requiring assistance from outside servers via WiFi, and 3D spatial sensing with driver and occupant monitoring, gaze-aware UI, and natural controls. All of that fits into an SoC fabricated at TSMC's fab on a 3 nm process and runs on the industry-established NVIDIA DRIVE OS.

Alibaba Unveils Plans for Server-Grade RISC-V Processor and RISC-V Laptop

Chinese e-commerce and cloud giant Alibaba announced its plans to launch a server-grade RISC-V processor later this year, and it showcased a RISC-V-powered laptop running an open-source operating system. The announcements were made by Alibaba's research division, the Damo Academy, at the recent Xuantie RISC-V Ecological Conference in Shenzhen. The upcoming server-class processor called the Xuantie C930, is expected to be launched by the end of 2024. While specific details about the chip have not been disclosed, it is anticipated to cater to AI and server workloads. This development is part of Alibaba's ongoing efforts to expand its RISC-V portfolio and reduce reliance on foreign chip technologies amidst US export restrictions. To complement the C930, Alibaba is also preparing a Xuantie 907 matrix processing unit for AI, which could be an IP block inside an SoC like the C930 or an SoC of its own.

In addition to the C930, Alibaba showcased the RuyiBOOK, a laptop powered by the company's existing T-Head C910 processor. The C910, previously designed for edge servers, AI, and telecommunications applications, has been adapted for use in laptops. Strangely, the RuyiBOOK laptop runs on the openEuler operating system, an open-source version of Huawei's EulerOS, which is based on Red Hat Linux. The laptop also features Alibaba's collaboration suite, Ding Talk, and the open-source office software Libre Office, demonstrating its potential to cater to the needs of Chinese knowledge workers and consumers without relying on foreign software. Zhang Jianfeng, president of the Damo Academy, emphasized the increasing demand for new computing power and the potential for RISC-V to enter a period of "application explosion." Alibaba plans to continue investing in RISC-V research and development and fostering collaboration within the industry to promote innovation and growth in the RISC-V ecosystem, lessening reliance on US-sourced technology.

Sony Semiconductor Solutions Selects Cutting-Edge AMD Adaptive Computing Tech

Yesterday, AMD announced that its cutting-edge adaptive computing technology was selected by Sony Semiconductor Solutions (SSS) for its newest automotive LiDAR reference design. SSS, a global leader in image sensor technology, and AMD joined forces to deliver a powerful and efficient LiDAR solution for use in autonomous vehicles. Using adaptive computing technology from AMD significantly extends the SSS LiDAR system capabilities, offering extraordinary accuracy, fast data processing, and high reliability for next-generation autonomous driving solutions.

In the rapidly evolving landscape of autonomous driving, the demand for precise and reliable sensor technology has never been greater. LiDAR (Light Detection and Ranging) technology plays a pivotal role in enabling depth perception and environmental mapping for various industries. LiDAR delivers image classification, segmentation, and object detection data that is essential for 3D vision perception enhanced by AI, which cannot be provided by cameras alone, especially in low-light or inclement weather. The dedicated LiDAR reference design addresses the complexities of autonomous vehicle development with a standardized platform to enhance safety in navigating diverse driving scenarios.

Samsung Prepares Mach-1 Chip to Rival NVIDIA in AI Inference

During its 55th annual shareholders' meeting, Samsung Electronics announced its entry into the AI processor market with the upcoming launch of its Mach-1 AI accelerator chips in early 2025. The South Korean tech giant revealed its plans to compete with established players like NVIDIA in the rapidly growing AI hardware sector. The Mach-1 generation of chips is an application-specific integrated circuit (ASIC) design equipped with LPDDR memory that is envisioned to excel in edge computing applications. While Samsung does not aim to directly rival NVIDIA's ultra-high-end AI solutions like the H100, B100, or B200, the company's strategy focuses on carving out a niche in the market by offering unique features and performance enhancements at the edge, where low power and efficient computing is what matters the most.

According to SeDaily, the Mach-1 chips boast a groundbreaking feature that significantly reduces memory bandwidth requirements for inference to approximately 0.125x compared to existing designs, which is an 87.5% reduction. This innovation could give Samsung a competitive edge in terms of efficiency and cost-effectiveness. As the demand for AI-powered devices and services continues to soar, Samsung's foray into the AI chip market is expected to intensify competition and drive innovation in the industry. While NVIDIA currently holds a dominant position, Samsung's cutting-edge technology and access to advanced semiconductor manufacturing nodes could make it a formidable contender. The Mach-1 has been field-verified on an FPGA, while the final design is currently going through a physical design for SoC, which includes placement, routing, and other layout optimizations.

NVIDIA "Blackwell" GeForce RTX to Feature Same 5nm-based TSMC 4N Foundry Node as GB100 AI GPU

Following Monday's blockbuster announcements of the "Blackwell" architecture and NVIDIA's B100, B200, and GB200 AI GPUs, all eyes are now on its client graphics derivatives, or the GeForce RTX GPUs that implement "Blackwell" as a graphics architecture. Leading the effort will be the new GB202 ASIC, a successor to the AD102 powering the current RTX 4090. This will be NVIDIA's biggest GPU with raster graphics and ray tracing capabilities. The GB202 is rumored to be followed by the GB203 in the premium segment, the GB205 a notch lower, and the GB206 further down the stack. Kopite7kimi, a reliable source with NVIDIA leaks, says that the GB202 silicon will be built on the same TSMC 4N foundry node as the GB100.

TSMC 4N is a derivative of the company's mainline N4P node, the "N" in 4N stands for NVIDIA. This is a nodelet that TSMC designed with optimization for NVIDIA SoCs. TSMC still considers the 4N as a derivative of the 5 nm EUV node. There is very little public information on the power- and transistor density improvements of the TSMC 4N over TSMC N5. For reference, the N4P, which TSMC regards as a 5 nm derivative, offers a 6% transistor-density improvement, and a 22% power efficiency improvement. In related news, Kopite7kimi says that with "Blackwell," NVIDIA is focusing on enlarging the L1 caches of the streaming multiprocessors (SM), which suggests a design focus on increasing the performance at an SM-level.

Sony PlayStation 5 Pro Details Emerge: Faster CPU, More System Bandwidth, and Better Audio

Sony is preparing to launch its next-generation PlayStation 5 Pro console in the Fall of 2024, right around the holidays. We previously covered a few graphics details about the console. However, today, we get more details about the CPU and the overall system, thanks to the exclusive information from Insider Gaming. Starting off, the sources indicate that PS5 Pro system memory will get a 28% bump in bandwidth, where the standard PS5 console had 448 GB/s, and the upgraded PS5 Pro will get 576 GB/s. Apparently, the memory system is more efficient, likely coming from an upgrade in memory from the GDDR6 SDRAM of the regular PS5. The next upgrade is the CPU, which has special modes for the main processor. The CPU uArch is likely the same, with clocks pushed to 3.85 GHz, resulting in a 10% frequency increase.

However, this is only achieved in the "High CPU Frequency Mode," which steals the SoC's power from the GPU and downclocks it slightly to allocate more power to the CPU in highly CPU-intense settings. The GPU we discussed here is an RDNA 3 IP with up to 45% faster graphics rendering. The ray tracing performance can be up to four times higher than the regular PS5, while the entire GPU delivers 33.5 TeraFLOPS of FP32 single-precision computing. This comes from 30 WGP running BVH8 shaders vs the 18 WGPs running BVH4 shaders on the regular PS5. There are PSSR upscalers present, and the GPU can output 8K resolution, which will come with future software updates. Last but not least, the AI front also has a custom AI accelerator capable of 300 8-bit INT8 TOPS and 67 16-bit FP16 TeraFLOPS. Audio codecs are getting some love, as well, with ACV running up to 35% faster.

Qualcomm Teases "Snapdragon 8s Gen 3" SoC Launch

Qualcomm's Weibo social media account has teased an upcoming new product launch: "the spring dragon raises its head, and everything is reborn! The new Snapdragon flagship is about to be released. Let's welcome the New Year and the new era. On March 18, please stay tuned for the Snapdragon flagship new product launch conference." News outlets believe that a variant of the current top-of-the-line Snapdragon 8 Gen 3 (SM8650-AB) chipset will be introduced next week. Smartphone tech tipster, Digital Chat Station, revealed that a mysterious Qualcomm Snapdragon "SM8635" model was in the pipeline. Early February speculation pointed to a possible "Snapdragon 8s Gen 3" moniker—the added "s" implies that this mobile processor could emerge as a cheaper "sub-flagship" model.

Geekbench 6.2.2 results—posted by a trio of Realme "RMX3851" android smartphones—revealed speculated "8s Gen 3" specifications, including a 3.01 GHz "Big" Core clock, an Adreno 735 integrated GPU, and a 1+3+4 cluster configuration. The pre-release samples could not keep up with finalized Snapdragon 8 Gen 3 hardware in performance gauntlets. A mid-range "Snapdragon 7+ Gen 3" SoC could make an appearance on March 18, but tipsters believe that the event will be dedicated to a single new product. Digital Chat Station reckons that Qualcomm will market the Snapdragon 8s Gen 3 "as a Little 8G3."

ScaleFlux SFX 5016 Will Set New Benchmarks for Enterprise SSD Efficiency and AI Workload Performance

As the IT sector continues to seek answers for scaling data processing performance while simultaneously improving efficiency - in terms of performance and density per watt, per system, per rack, and per dollar of CapEx and OpEx - ScaleFlux is answering the call with innovative design choices in its SSD controllers. The SFX 5016 promises to set new standards both for performance and for power efficiency.

In addition to carrying forward the transparent compression feature that ScaleFlux first released in 2020 in upgraded in 2022 with the SFX 3016 computational storage drive controller, the new SFX 5016 SOC processor includes a number of design advances.

Qualcomm Snapdragon X Elite Benchmarked Against Intel Core Ultra 7 155H

Qualcomm Snapdragon X Elite is about to make landfall in the ultraportable notebook segment, powering a new wave of Windows 11 devices powered by Arm, capable of running even legacy Windows applications. The Snapdragon X Elite SoC in particular has been designed to rival the Apple M3 chip powering the 2024 MacBook Air, and some of the "entry-level" variants of the 2023 MacBook Pros. These chips threaten the 15 W U-segment and even 28 W P-segment of x86-64 processors from Intel, such as the Core Ultra "Meteor Lake," and Ryzen 8040 "Hawk Point." Erdi Özüağ, prominent tech journalist from Türkiye, has access to a Qualcomm-reference notebook powered by the Snapdragon X Elite X1E80100 28 W SoC. He compared its performance to an off-the-shelf notebook powered by a 28 W Intel Core Ultra 7 155H "Meteor Lake" processor.

There are three tests that highlight the performance of the key components of the SoCs—CPU, iGPU, and NPU. A Microsoft Visual Studio code compile test sees the Snapdragon X Elite with its 12-core Oryon CPU finish the test in 37 seconds; compared to 54 seconds by the Core Ultra 7 155H with its 6P+8E+2LP CPU. In the 3DMark test, the Adreno 750 iGPU posts identical performance numbers to the Arc Graphics Xe-LPG of the 155H. Where the Snapdragon X Elite dominates the Intel chip is AI inferencing. The UL Procyon test sees the 45 TOPS NPU of the Snapdragon X Elite score 1720 points compared to 476 points by the 10 TOPS AI Boost NPU of the Core Ultra. The Intel machine is using OpenVINO, while the Snapdragon is using Qualcomm SNPE SDK for the test. Don't forget to check out the video review by Erdi Özüağ in the source link below.

Huawei's HiSilicon Taishan V120 Server Core Matches Zen 3 Performance

Huawei's new server CPU based on the HiSilicon Taishan V120 core has shown impressive single-threaded performance that matches AMD's Zen 3 architecture in a leaked Geekbench 6 benchmark. The Taishan V120 is likely being manufactured on SMIC's 7 nm process node. The Geekbench 6 result posted on social media does not identify the exact Huawei server CPU model, but speculation points to it being the upcoming Kunpeng 930 chip. In the benchmark, the Taishan V120 CPU operating at 2.9 GHz scored 1527 in the single-core test. This positions it nearly equal to AMD's EPYC 7413 server CPU based on the Zen 3 architecture, which boosts up to 3.6 GHz and which scored 1538 points. It also matches the single-threaded performance of Intel's Coffee Lake-based Xeon E-2136 from 2018, even though that Intel chip can reach 4.5 GHz boost speeds, scoring 1553 points.

The Taishan V120 core first appeared in Huawei's Kirin 9000 smartphone SoC in 2020. Using the core in server CPUs would allow Huawei to achieve competitive single-threaded performance to rival AMD's last-generation EPYC Milan and Intel's older Skylake server chips. Multi-threaded benchmarks will be required to gauge the Kunpeng 930's overall performance fully when it launches. Huawei continues innovating its ARM-based server CPU designs even while facing restrictions on manufacturing and selling chips internationally due to its inclusion on the US Entity List in 2019. The impressive single-threaded results versus leading x86 competitors demonstrate Huawei's resilience and self-reliance in developing homegrown data center technology through its HiSilicon division. More details on the Kunpeng 930 server chip will likely surface later this year, along with server configurations from Chinese OEMs.

Qualcomm "Snapdragon 8s Gen 3" SoC with Adreno 735 GPU Gets Geekbenched

A mysterious Qualcomm Snapdragon "SM8635" model emerged earlier this month—courtesy of ever reliable smartphone tech tipster Digital Chat Station. They claimed that the unnamed mobile chipset had posted an AnTuTu score of roughly 1.7 million, with specifications including one Cortex-X4 core clocked at 2.9 GHz and an integrated Adreno 735 GPU. TSMC's 4 nm process node was also mentioned—not a particularly big revelation since the latest Snapdragon flagship is a 4 nm part. Early guess work pointed to possible Snapdragon 8s Gen 2 or Snapdragon 8 Gen 3 Lite guises, but a Geekbench Browser leak indicates that SM8635 is destined to become "Snapdragon 8s Gen 3," in Digital Chat Station's opinion.

A Realme "RMX3851" android device was tested in Geekbench 6.2.2—stated specifications include a 3.01 GHz "Big" Core clock, Adreno 735 GPU, and a 1+3+4 cluster configuration. Many believe that the SM8635 is positioned as a cut-down alternative to Snapdragon 8 Gen 3 (SM8650-AB), given that Realme specializes in producing value-oriented "near flagship" specced smartphones. Wccftech has spent hands-on time with various Qualcomm Snapdragon 8 Gen 3-powered devices: "You can see in (Realme's Geekbench entry) that the alleged Snapdragon 8s Gen 3 does not perform on the same level as its elder brother, which scores higher in both single and multi-core. For the sake of reference, I have seen the elder sibling going as high as 2,329 in single-core tests and 7,501 in multi-core tests. So, this chipset is performing at half the speed, but of course, this seems like a device that is not completely ready, so the final scores might improve." Further (insider) leaks or an official Qualcomm announcement will confirm whether the posited "Snapdragon 8s Gen 3" moniker is a good guess, although another leaked chip suggests another path. Roland Quandt reckons that a similarly configured "SM7675" SoC will be joining the Snapdragon 7 Gen family.

Intel to Make its Most Advanced Foundry Nodes Available even to AMD, NVIDIA, and Qualcomm

Intel CEO Pat Gelsinger, speaking at the Intel Foundry Services (IFS) Direct Connect event, confirmed to Tom's Hardware that he hopes to turn IFS into the West's premier foundry company, and a direct technological and volume rival to TSMC. He said that there is a clear line of distinction between Intel Products and Intel Foundry, and that later this year, IFS will be more legally distinct from Intel, becoming its own entity. The only way Gelsinger sees IFS being competitive to TSMC, is by making its most advanced semiconductor manufacturing nodes and 3D chip packaging innovations available to foundry customers other than itself (Intel Products), even if it means providing them to companies that directly compete with Intel products, such as AMD and Qualcomm.

Paul Alcorn of Tom's Hardware asked CEO Gelsinger "Intel will now offer its process nodes to some of its competitors, and there may be situations wherein your product teams are competing directly with competitors that are enabled by your crown jewels. How do you plan to navigate those types of situations and maybe soothe ruffled feathers on your product teams?" To this, Gelsinger responded "Well, if you go back to the picture I showed today, Paul, there are Intel products and Intel foundry, There's a clean line between those, and as I said on the last earnings call, we'll have a setup separate legal entity for Intel foundry this year," Gelsinger responded. "We'll start posting separate financials associated with that going forward. And the foundry team's objective is simple: Fill. The. Fabs. Deliver to the broadest set of customers on the planet."

Cadence Digital and Custom/Analog Flows Certified for Latest Intel 18A Process Technology

Cadence's digital and custom/analog flows are certified on the Intel 18A process technology. Cadence design IP supports this node from Intel Foundry, and the corresponding process design kits (PDKs) are delivered to accelerate the development of a wide variety of low-power consumer, high-performance computing (HPC), AI and mobile computing designs. Customers can now begin using the production-ready Cadence design flows and design IP to achieve design goals and speed up time to market.

"Intel Foundry is very excited to expand our partnership with Cadence to enable key markets for the leading-edge Intel 18A process technology," said Rahul Goyal, Vice President and General Manager, Product and Design Ecosystem, Intel Foundry. "We will leverage Cadence's world-class portfolio of IP, AI design technologies, and advanced packaging solutions to enable high-volume, high-performance, and power-efficient SoCs in Intel Foundry's most advanced process technology. Cadence is an indispensable partner supporting our IDM2.0 strategy and the Intel Foundry ecosystem."

Intel Announces Intel 14A (1.4 nm) and Intel 3T Foundry Nodes, Launches World's First Systems Foundry Designed for the AI Era

Intel Corp. today launched Intel Foundry as a more sustainable systems foundry business designed for the AI era and announced an expanded process roadmap designed to establish leadership into the latter part of this decade. The company also highlighted customer momentum and support from ecosystem partners - including Synopsys, Cadence, Siemens and Ansys - who outlined their readiness to accelerate Intel Foundry customers' chip designs with tools, design flows and IP portfolios validated for Intel's advanced packaging and Intel 18A process technologies.

The announcements were made at Intel's first foundry event, Intel Foundry Direct Connect, where the company gathered customers, ecosystem companies and leaders from across the industry. Among the participants and speakers were U.S. Secretary of Commerce Gina Raimondo, Arm CEO Rene Haas, Microsoft CEO Satya Nadella, OpenAI CEO Sam Altman and others.

Alleged ARM Cortex-X5 Underperformance Linked to Power Consumption Concerns

ARM's in-progress fifth generation "Blackhawk" Cortex design is allegedly going through a troubled phase of development, according to Chinese insider sources. A Revegnus (@Tech_Reve) social media post highlights ongoing issues: "It's reported that the Cortex X5 architecture is underperforming compared to expectations. It's speculated that the high-frequency power consumption has surged explosively. Therefore, if performance is reduced for lower power consumption, the Geekbench 6 multi-core score of Dimensity 9400 may not achieve a score of 9,400 points." A recent Moor Insights & Strategy analysis piece proposed that "Blackhawk" would become "the most powerful option available at launch" later this year—mobile chipsets leveraging ARM's Cortex-X5 design are touted to face tough next-gen competition from Qualcomm and Apple corners.

Revegnus pulled in a rival SoC: "While Snapdragon 8 Gen 4 is seen to have minor issues, there is no evidence to support this claim. There might be a problem with low-frequency power consumption not showing clear superiority over ARM's middle cores." Qualcomm's next flagship model is performing admirably according to insiders—an engineering sample managed to score 10,628 points in alleged Geekbench 6 multi-core gauntlets. Late last month prototype clocks were leaked—Digital Chat Station claimed that a Snapdragon 8 Gen 4 High-Performance "Big" core was capable of reaching 4.0 GHz. Prior to the latest news, MediaTek's Dimensity 9400 SoC was observed achieving ~10,000 multi-core Geekbench 6 scores—leaked CPU cluster details present a single "Big" Cortex-X5 unit operating alongside three Cortex-X4 cores.

Games Consultant Predicts H2Y24 Launch for PlayStation 5 Pro

Serkan Toto, CEO of Tokyo-based games consultancy Kantan Games was interviewed by CNBC earlier this week—he was invited on-air to provide expert commentary on Sony's freshly revised sales and revenue forecast for PlayStation 5 products. He believes that great forward momentum is best achieved with refreshed hardware, and a well timed launch coinciding with the release of AAA/blockbuster games titles. Last autumn's rollout of slimmer PlayStation 5 consoles was not particularly exciting—with no major bump up in specs or attractive pricing. The development of an inevitable "Pro" variant has circulated around rumor mills for more than a year.

Sony Computer Entertainment (SCE) and AMD are believed to co-operating on a very potent hardware redesign—reports from late last year posited that a semi-custom "Viola" SoC is in the pipeline. A more expensive RDNA 3-upgraded refresh could attract an additional segment of hardcore gamers, but another industry analyst reckons that Sony is unlikely to implement a standard model price cut later this year (based on past trends). George Jijiashvili, senior principal analyst at Omdia, stated: "A scenario where Sony launches a PS5 Pro, but still experiences declining year-on-year hardware sales is very much within the realms of possibility." Serkan Toto (of Kantan Games consultancy) expressed a more optimistic view: "There seems to be a broad consensus in the game industry that Sony is indeed preparing a launch of a PS5 Pro in the second half of 2024...And Sony will want to make sure to have a great piece of hardware ready when GTA VI hits in 2025, a launch that will be a shot in the arm for the entire gaming industry."

Intel Foundry Services (IFS) and Cadence Design Systems Expand Partnership on SoC Design

Intel Foundry Services (IFS) and Cadence Design Systems Inc. today announced a multiyear strategic agreement to jointly develop a portfolio of key customized intellectual property (IP), optimized design flows and techniques for Intel 18A process technology featuring RibbonFET gate-all-around transistors and PowerVia backside power delivery. Joint customers of the companies will be able to accelerate system-on-chip (SoC) project schedules on process nodes from Intel 18A and beyond while optimizing for performance, power, area, bandwidth and latency for demanding artificial intelligence, high performance computing and premium mobile applications.

"We're very excited to expand our partnership with Cadence to grow the IP ecosystem for IFS and provide choice for customers," said Stuart Paann, Intel senior vice president and general manager of IFS. "We will leverage Cadence's world-class portfolio of leading IP and advanced design solutions to enable our customers to deliver high-volume, high-performance and power-efficient SoCs on Intel's leading-edge process technologies."

Intel Lunar Lake A1 Sample CPU Boost & Cache Specs Leak Out

HXL (@9550pro) has highlighted an intriguing pinned post on the Chinese Zhihu community site—where XZiar, a self described "Central Processing Unit (CPU) expert," has shared a very fuzzy/low quality screenshot of a Windows Task Manager session. The information on display indicates that a "Genuine Intel(R) 0000 1.0 GHz" processor was in use—perhaps a very early Lunar Lake (LNL) engineering sample (ES1). XZiar confirmed the pre-release nature of the onboard chip, and teased its performance prowess: "It's good to use the craftsmanship that others have stepped on. It can run 2.8 GHz with only A1 step, and it is very smooth."

The "A1" designation implies that the leaked sample is among the first LNL processor prototypes to exit manufacturing facilities—Intel previewed its "Lunar Lake-MX" SoC package to press representatives last November. XZiar's followers have pored over the screenshot and ascertained that the leaked example sports a "8-core + 8-thread, without Hyperthreading, 4P+4LPE" configuration. Others were confused by the chip's somewhat odd on-board cache designations—L1: 836 KB, L2: 14 MB and L3: 12 MB—XZiar believes that prototype's setup "is obviously not up to par," when a replier compares the spec to an N300 series processor. It is theorized that Windows Task Manager is simply not fully capable of detecting the sample's full makeup, but XZiar reckons that 12 MB of L3 cache is the correct figure.

Nintendo Switch 2 Could Retain Backward Compatibility with The First-Gen Console

Reports are circulating online that Nintendo's upcoming successor to the Switch console, tentatively referred to as the "Switch 2," will offer backward compatibility for physical game cards and digital purchases from the current Switch library. While Nintendo has yet to officially announce the new console, speculation points to a potential reveal as early as next month for a 2024 launch. The backward compatibility claims first surfaced last year when Nintendo America President Doug Bowser hinted at supporting continuity between console generations to minimize the sales decline when transitioning hardware. New momentum behind the rumors comes from gaming industry insiders Felipe Lima and PH Brazil, who, during recent podcasts, stated the Switch 2 has backward compatibility functionality already being shared with game developers.

Well-known gaming leakers "NateTheHate" and others have corroborated that testing is underway for playing current Switch games on new hardware. If true, this backward compatibility would be a consumer-friendly move that breaks from Nintendo's past tendencies of forcing clean breaks between console ecosystems. While details remain unconfirmed by Nintendo, multiple credible sources point to the upcoming Switch successor allowing gamers to carry forward both their physical and digital libraries to continue enjoying this generation's releases. If the compatibility remains, the hardware platform could stay in the playing field of the same vendor—NVIDIA—who provided Nintendo with Tegra X1 SoC. The updated version of the SoC could use a fork of NVIDIA's Orin platform based on Ampere GPU with DLSS, but official details are yet to be seen.
Return to Keyword Browsing
May 1st, 2024 00:11 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts