• Welcome to TechPowerUp Forums, Guest! Please check out our forum guidelines for info related to our community.

AMD Unveils 5 nm Ryzen 7000 "Zen 4" Desktop Processors & AM5 DDR5 Platform

Joined
May 2, 2017
Messages
7,762 (2.77/day)
Location
Back in Norway
System Name Hotbox
Processor AMD Ryzen 7 5800X, 110/95/110, PBO +150Mhz, CO -7,-7,-20(x6),
Motherboard ASRock Phantom Gaming B550 ITX/ax
Cooling LOBO + Laing DDC 1T Plus PWM + Corsair XR5 280mm + 2x Arctic P14
Memory 32GB G.Skill FlareX 3200c14 @3800c15
Video Card(s) PowerColor Radeon 6900XT Liquid Devil Ultimate, UC@2250MHz max @~200W
Storage 2TB Adata SX8200 Pro
Display(s) Dell U2711 main, AOC 24P2C secondary
Case SSUPD Meshlicious
Audio Device(s) Optoma Nuforce μDAC 3
Power Supply Corsair SF750 Platinum
Mouse Logitech G603
Keyboard Keychron K3/Cooler Master MasterKeys Pro M w/DSA profile caps
Software Windows 10 Pro
Which gets wasted with an IGP, try again :rolleyes:

I'm guesstimating the bigger cache variants would likely ditch the IGP with massive (L3?) caches near the cores or on the IoD, maybe even an L4 cache.
What, you think that 3-4CU iGPU is going to consume a noticeable amount of power? Yeah, no, sorry. Considering AMD's iGPUs run fine with 3-4x the CUs in 15W U-series APUs, I really don't think that cut-down variant will make even a dent in the power consumption of their desktop chips.

It's quite likely that Zen4c has less L3 cache, yes - that's one of the easiest ways of cutting down on area. But it's also likely tweaked in other ways - just like Zen2 was significantly smaller than Zen3 on the same process, Zen4 is another die size increase, so Zen4c might be closer to Zen2/3 in various areas to keep it slim. It's meant for applications where the sheer number of threads matters far more than their absolute peak performance after all, so some concessions are expected.
"the company claiming a 15% single-threaded uplift over "Zen 3"" - 15% is really not much to write home about for a generational change, especially considering there's the transition to faster memory too. Is Zen running out of steam finally?
We'll see. If that's 15% IPC, that's okay, if that's 15% including the clock speed increase it's a let-down for sure. Acceptable overall performance boost, barely, but only through pushing clocks ridiculously high, which kills efficiency.
"AI compute acceleration" is vague enough to mean precisely nothing - why would consumers care?
Yep. Guess they're matching Intel there though; they've been advertising the same for at least the past generation.
"up to 24 PCI-Express 5.0 lanes from the processor" - that's not nearly as many as I was hoping, it's the same number as ADL (I'm including the latter's chipset DMI link here). Granted, 8 PCIe 5.0 lanes are superior to 8 4.0 lanes, but if AMD has to spend 4 lanes on the chipset(s) then you're back to parity with ADL. Which means it should be easy for RKL to match or even exceed this count.
It's not the same as ADL - ADL has 5.0 x16 PEG and 5.0 for the chipset (IIRC), but no 5.0 m.2. Not that 4 lanes less matters much, but ADL prioritizing 5.0 for GPUs rather than storage never made sense in the first place - it's doubtful any GPU in the next half decade will be meaningfully limited by PCIe 4.0 x16.
"the AM5 Socket retains cooler compatibility with AM4" - I wonder how many idiots are going to reuse their shitty $20 tower coolers on Zen 4 CPUs, then complain the CPUs are slow because they throttle.
... is that any more likely than them buying a shitty $20 AM5 tower cooler? There are plenty of great AM4 coolers out there after all. Retaining compatibility reduces waste in a meaningful and impactful way. You don't fix people being stupid by forcing obsolescence onto fully functional parts.
"up to 14 USB 20 Gbps ports" - lovely marketing weasel-words, you still need an entire lane of PCIe 5.0 or 2 lanes of 4.0 to reach 20Gbps. Unless the chipset(s) themselves are 5.0-capable, which I strongly doubt due to cost implications, they will need to have a shitton of 4.0 lanes to be able to provide that level of USB connectivity. I'm expecting the same thing that we saw on X370, namely one or two USB-C ports at the highest speed and the rest still being ye olde 3.1 gen 1 type-A.
X670E is literally marketed as "PCIe 5.0 everywhere", providing 24 more lanes of 5.0 (and, presumably, another 4 of which go to the CPU interconnect, leaving a total of 40). X670 most likely retains the 5.0 chipset uplink even if it runs its PCIe at 4.0 speeds. The main limitation to this is still the cost of physically implementing this amount of high speed IO on the motherboard, as that takes a lot of layers and possibly higher quality PCB materials.
No explicit mention of USB4 anywhere, which is ominous. I can't imagine AMD would be stupid enough to launch a platform that lacks USB4, but also... AMD.
Several announced motherboards mention it explicitly, so no need to worry on that front. The only unknown is whether it's integrated into the CPU/chipset or not. Support is there.
"AMD is betting big on next-generation M.2 NVMe SSDs with PCI-Express Gen 5" - nobody cares, PCIe 4.0 SSDs are stupidly fast already, no ordinary consumer wants or needs 5.0 SSDs, what they want and need are cheaper and more efficient SSDs.
This is mostly true, and I agree that PCIe 5.0 SSDs are pretty dumb, but that's how competition works in tech - if your competitor has a feature, you need another feature on top of that again.
"The new AMD Smart Access Storage technology builds on Microsoft DirectStorage" - something else nobody cares about.
On this I'd have to disagree with you. DS has a lot of potential - current software just can't make use of our blazing fast storage, and DS goes a long way towards fixing that issue. It just needs a) to be fully implemented, with GPU decompression support, and b) be adopted by developers. The latter is pretty much a given for big name titles given that it's an Xbox platform feature though.


15% ST increase should yield a higher overal MT performance, right?
Depends how that increase is reached, and whether the same thing is maintainable in MT. If it's only from pushing clocks and that means increasing power, it might not. If it's from improved efficiency and IPC, most likely yes. But there's tons of gray area and nuance.
 
Joined
Feb 8, 2017
Messages
252 (0.09/day)
I also feel it won't be enough especially if the rumored 10-15% ST performance improvements for Raptor Lake are true... In some applications Zen 3 is 30% behind in ST performance vs Alderlake.
What? Which applications are those? Even the top end Intel processor the 12900ks runs at exactly the same performance as the 5950x according to techpowerup database and other websites. In terms on applications still only running on 1 core those don't really exist anymore. You'd have to find older 2019 apps and before to test, but not many reviewers test those as they are usually obscure apps and most have updated versions running multiple cores.

In terms of benchmarking apps that only test a single core there can be a difference of 20% percent, but with the Intel processor using faster DDR5 memory!
 
Joined
Jun 1, 2021
Messages
88 (0.07/day)
System Name NR200 SuperSport Speed Machine yet quiet
Processor Ryzen 7 5800x
Motherboard Gigabyte B550I AORUS PRO AX
Cooling Noctua NH-D15 w/Thermal Grizzly Kryonaut
Memory Corsair Vengeance LPX 32 GB (2 x 16 GB) DDR4 3600Mhz
Video Card(s) Sapphire AMD Radeon RX 6800 Nitro plus 16GB With SAM and OCed
Storage Samsung 970 EVO PLUS 1TB NVMe M.2 Solid State Drive
Display(s) Gigabyte G27Q GAMING MONITOR 1440p 144hz IPS HDR "1ms"
Case Cooler Master NR200P w/Mods w/Full Noctua fans
Audio Device(s) Beyerdynamic DT 770 PRO 80 Ohm/Ifi Zen Dac v2
Power Supply Corsair SF 600 W 80+ Platinum Certified Fully Modular SFX
Mouse Glorious Model D Matte White w/Mousepad: Cooler Master MP511 (Size XL)
Keyboard Cooler Master CK550 Gateron Red Switch w/Tai-Hao Doubleshot PBT Backlit - Cool Gray/Navy
Software Microsoft Windows 10 Pro Full - USB 32/64-bit
Benchmark Scores https://www.3dmark.com/spy/27840416
That AM5 CPU is going to be hard to get thermal paste off with all those gaps on the outside :fear:
 
Joined
Apr 6, 2021
Messages
1,131 (0.82/day)
Location
Bavaria ⌬ Germany
System Name ✨ Lenovo M700 [Tiny]
Cooling ⚠️ 78,08% N² ⌬ 20,95% O² ⌬ 0,93% Ar ⌬ 0,04% CO²
Audio Device(s) ◐◑ AKG K702 ⌬ FiiO E10K Olympus 2
Mouse ✌️ Corsair M65 RGB Elite [Black] ⌬ Endgame Gear MPC-890 Cordura
Keyboard ⌨ Turtle Beach Impact 500
That AM5 CPU is going to be hard to get thermal paste off with all those gaps on the outside :fear:

Yep. And all the tiny transistors lurking between the kerbs. You need a steam cleaner to get it out there. :laugh:
 
Joined
Jun 1, 2021
Messages
88 (0.07/day)
System Name NR200 SuperSport Speed Machine yet quiet
Processor Ryzen 7 5800x
Motherboard Gigabyte B550I AORUS PRO AX
Cooling Noctua NH-D15 w/Thermal Grizzly Kryonaut
Memory Corsair Vengeance LPX 32 GB (2 x 16 GB) DDR4 3600Mhz
Video Card(s) Sapphire AMD Radeon RX 6800 Nitro plus 16GB With SAM and OCed
Storage Samsung 970 EVO PLUS 1TB NVMe M.2 Solid State Drive
Display(s) Gigabyte G27Q GAMING MONITOR 1440p 144hz IPS HDR "1ms"
Case Cooler Master NR200P w/Mods w/Full Noctua fans
Audio Device(s) Beyerdynamic DT 770 PRO 80 Ohm/Ifi Zen Dac v2
Power Supply Corsair SF 600 W 80+ Platinum Certified Fully Modular SFX
Mouse Glorious Model D Matte White w/Mousepad: Cooler Master MP511 (Size XL)
Keyboard Cooler Master CK550 Gateron Red Switch w/Tai-Hao Doubleshot PBT Backlit - Cool Gray/Navy
Software Microsoft Windows 10 Pro Full - USB 32/64-bit
Benchmark Scores https://www.3dmark.com/spy/27840416
Yep. And all the tiny transistors lurking between the kerbs. You need a steam cleaner to get it out there. :laugh:
I don't see why they did it? Maybe for easier RMA testing?
 
Joined
Sep 10, 2018
Messages
7,078 (3.06/day)
Location
California
System Name His & Hers
Processor R7 5800X/ R7 7950X3D Stock
Motherboard X670E Aorus Pro X/ROG Crosshair VIII Hero
Cooling Corsair h150 elite/ Corsair h115i Platinum
Memory Trident Z5 Neo 6000/ 32 GB 3200 CL14 @3800 CL16 Team T Force Nighthawk
Video Card(s) Evga FTW 3 Ultra 3080ti/ Gigabyte Gaming OC 4090
Storage lots of SSD.
Display(s) A whole bunch OLED, VA, IPS.....
Case 011 Dynamic XL/ Phanteks Evolv X
Audio Device(s) Arctis Pro + gaming Dac/ Corsair sp 2500/ Logitech G560/Samsung Q990B
Power Supply Seasonic Ultra Prime Titanium 1000w/850w
Mouse Logitech G502 Lightspeed/ Logitech G Pro Hero.
Keyboard Logitech - G915 LIGHTSPEED / Logitech G Pro
What? Which applications are those? Even the top end Intel processor the 12900ks runs at exactly the same performance as the 5950x according to techpowerup database and other websites. In terms on applications still only running on 1 core those don't really exist anymore. You'd have to find older 2019 apps and before to test, but not many reviewers test those as they are usually obscure apps and most have updated versions running multiple cores.

In terms of benchmarking apps that only test a single core there can be a difference of 20% percent, but with the Intel processor using faster DDR5 memory!


excel.pngcinebench-single.png

Just not a huge fan with AMD being so much later and just at best matching Alderlake ST performance on what seems like a much more advanced node. I gave intel crap and even ditched their platform entirely for taking so long to release something worthwhile over 9th gen. MT performance is just as important but ignoring ST performance is also foolish. Again just mildly disappointed and expected more especially after Zen2 and Zen3. Looking forward to seeing actual reviews of these and hopefully AMD is being conservative. There are a lot of fanboys that just want to see AMD or Intel die depending on what team they imaginarily think they are a part of but we as consumers need both chip vendors to be competitive because that will mean much better products for us and not just quad cores for 7 generations....


Good times already an installation video out....

 
Last edited:
Joined
Feb 15, 2019
Messages
1,671 (0.78/day)
System Name Personal Gaming Rig
Processor Ryzen 7800X3D
Motherboard MSI X670E Carbon
Cooling MO-RA 3 420
Memory 32GB 6000MHz
Video Card(s) RTX 4090 ICHILL FROSTBITE ULTRA
Storage 4x 2TB Nvme
Display(s) Samsung G8 OLED
Case Silverstone FT04
Yes, that is exactly correct. When you say "slower than A" that wording explicitly takes the time spent by A to finish the job as the point of reference. Working with percentages, that would then be 100%. Similarly, "faster than B" means the point of reference is B, setting the time spent by B as 100%. The difference is thus relative to the base number, whether that is higher or lower. Whereever you set the baseline, the comparisons follow from that.

... is that a problem? It is literally impossible for something to be infinitely fast, that's just how nature works, so ... yes? Is there some fundamental problem with the impossibility of a 100% increase in a relative percentage measuring towards zero? You can't do the task in zero time, and you can't have a 100% increase, because 100% is then the span between a theoretical zero time expenditure and the real time expenditure. This is literally the only common sense approach of comparing time expenditures trending towards zero - the only method that takes into account that zero will never be reached, and that doesn't exaggerate the difference bewteen minute real-world changes.

I mean, this is even included in your hackneyed reformulation, which tries to avoid this by reformulating the variables in question to "units of work per time" (which might be zero, but only at zero work done) rather than "time spent per one unit of work", which is what the slide here (and nearly all such benchmarks) presents.

You're arguing as if it's better if a change between, say, 20s and 10s compared to a 200s baseline were presented as "10x faster" and "20x faster", despite the fact that this grossly exaggerates the difference between the two. You see that, right? Presenting those two as 90% and 95% faster is a far more accurate representation of their absolute time expenditure.

But all of those are still true. Your "in reality" statements, which seem to be meant as rebuttals, are literally the same ratio. They're saying the same thing. And all are equally valid - but which is more useful or appropriate depends on context, of course. And the context is what you're misapplying here. The context is not a question looking for a rate of work, but a time till completion of work. And in terms of marketing, the application you're arguing for is one that exaggerates the actual improvements. When you're comparing two things to see how fast they can finish a task, it's the reduction in task completion time that matters, not the fact that a 100% reduction is impossible. That's just how the world works.

Again, No.

Again, using the same example as above
Comparing 1s and 200s jobs
Using YOUR equations
1s is 99.5% faster than 200s and 200s is 19900% slower than 1s
So your statement " Presenting those two as 90% and 95% faster is a far more accurate representation of their absolute time expenditure." is totally flawed because the 19900% is STILL THERE.

The only thing there is "faster" and "slower" doesn't apply to "Time" alone.
"Time" is just "No. of seconds" and there is no "Speed" there.
"Speed" only happens when "Something divided by Time"
You cannot describe something is "faster" or "slower" without a "Speed" element
Therefore in the equation you must calculate the "Speed" first
And that's the fundamental flaw in your statements / equations.

"No. of seconds" alone has no meaning
"Work done within No. of seconds" is what we needed.
1s and 200s has no meaning if the amount of work done is unknown.
The person could have spent 1s and get 1 work done and stop there while the other guy spent 200s and did 300 work done.
Therefore the "Amount of work done" must be put into the equation to calculate "Speed" before anyone could describe who is "Faster".

Comparing 204s vs 297s alone
You can say 204s is 31% "Smaller" or "Shorter" or "Less" or "reduction" than 297s, but you should never, never say it is "Faster" than 297s without a work done in the equation.

In this CPU case it is "1 test case done in 204 seconds" vs "1 test case done in 297 seconds"
So the "1" must be put into the equation
1/204 = 0.00490
1/297 = 0.00337
(490-337)/490 = 31% slower
(490-337)/337 = 45% Faster
Without the "1" , your equation does not represent any "Speed" element.

Please do realize we are comparing "How quickly the CPU works"
Your explanations only represents "Time reductions in 2 tests"

Replace the "Faster" word with "shorter" and your statements are totally fine.
But if you need to use the word "Faster" please include "Speed" into your equations.

Enough said
 
Last edited:
Joined
Oct 27, 2020
Messages
804 (0.52/day)
I was here to write about how AVX-512 (or SMT improvements) might have played a role in the blender test, but seeing the slower/faster arguments I was exhausted.
It's 7950X being 45% faster than 12900K or 12900K being 31% slower than 7950X (not 7950X being 31% faster than 12900K), it's so simple, basic logic stuff really, AMD's marketing guys probably are from financial sector measuring everything in margins (even when we are talking about mark-ups), it's better for profits for sure lol
 
Last edited:
Joined
Apr 18, 2019
Messages
2,416 (1.16/day)
Location
Olympia, WA
System Name Sleepy Painter
Processor AMD Ryzen 5 3600
Motherboard Asus TuF Gaming X570-PLUS/WIFI
Cooling FSP Windale 6 - Passive
Memory 2x16GB F4-3600C16-16GVKC @ 16-19-21-36-58-1T
Video Card(s) MSI RX580 8GB
Storage 2x Samsung PM963 960GB nVME RAID0, Crucial BX500 1TB SATA, WD Blue 3D 2TB SATA
Display(s) Microboard 32" Curved 1080P 144hz VA w/ Freesync
Case NZXT Gamma Classic Black
Audio Device(s) Asus Xonar D1
Power Supply Rosewill 1KW on 240V@60hz
Mouse Logitech MX518 Legend
Keyboard Red Dragon K552
Software Windows 10 Enterprise 2019 LTSC 1809 17763.1757
What's with the lack of expansion? Hopefully lane bifurcation is fully supported; I'm only seeing 3 PCIe slots *at most*. Huge waste of lanes to put an x1-x8 lane NIC, Video Capture Card, Storage Controller, Thunderbolt/USB4 card, etc. in an x16 slot. Are Bifurcated risers, (popular with cryptominers) going to come to the enthusiast and prosumer space? Or, do the big boys think they've included everything we could possible want on mobo or SoC?
 
Last edited:
Joined
May 8, 2018
Messages
1,576 (0.65/day)
Location
London, UK
I'm a lot more optimistic than AMD itself, I mean, core clock increased 10% alone, means 10% more performance even if is one core only or even 2 cores, 5nm = more transistors + ddr5 + some minor fixes and tweaks that is 5% more, 15% to expect is likely the minimum to expect from it, don't think amd tried much here, they could have increased its ipc a lot more, anyway, I'm not sure if i will upgrade from my 5900x, ddr5 still very expensive and i would want at least 64gb, currently using 32gb, it has been enough so far, sometimes few minor issues with many programs opened at once. I will likely wait for the next cpu after 7xxx series.
 

ir_cow

Staff member
Joined
Sep 4, 2008
Messages
4,606 (0.77/day)
Location
USA
That AM5 CPU is going to be hard to get thermal paste off with all those gaps on the outside :fear:
I'm planning on just leaving it. I swap CPUs daily for testing and that would become a part-time job removing it all haha.


Personally I am mostly invested in the FLCK. Hopefully it is 3000MHz (DDR5-6000) for starting. Just speculation of course before the NDAs steal my soul and I become aware of the truth. Beside the AM5 memory, I like the idea of more PCIe 5.0 Lanes. Dual chipset is a interesting approach as a solution. Will the consumer market need Gen5 NVMe drives? No way! but, it does make sense for content creators.

AMD iGPU??? I want to see a option without it. A waste of silicon in my opinion. Only time iGPU is useful is video encoding (Intel QUICKSYNC), laptops and low-end pre-builts. Give me a CPU at a lower price point and gut the iGPU for my desktop!
 
Last edited:
Joined
May 3, 2018
Messages
2,881 (1.18/day)
15% isn't enough, that brings ST up to Alder Lake, while this will compete with raptor lake.
Ha ha, yeah sure AMD is going to right up front tell Intel what the performance improvements from Zen 4 really are 4-5 months ahead of release and even worse admit they aren't great. This is a classic misdirect. You really think AMD would basically say we can't even match Alder Lake with Zen 4 and with Raptor Lake still to come this year. This would be a total failure from them. The internal leaks from AMD are saying ST will be >> 15% uplift and MT > ST. This is a bigger uplift than Zen 3 was over Zen 2 if the leaks are to be believed.

I would not worry at all at this stage. Now Intel may have a real surprise for RL and Zen4 may well find itself in trouble again at the end of the year but only time will tell. The one thing Intel has going for it is MT performance will be greatly enhanced due to doubling E-cores. AMD I doubt can get that crown back before Zen 5 at best.
 
Joined
Oct 1, 2013
Messages
250 (0.06/day)
Ha ha, yeah sure AMD is going to right up front tell Intel what the performance improvements from Zen 4 really are 4-5 months ahead of release and even worse admit they aren't great. This is a classic misdirect. You really think AMD would basically say we can't even match Alder Lake with Zen 4 and with Raptor Lake still to come this year. This would be a total failure from them. The internal leaks from AMD are saying ST will be >> 15% uplift and MT > ST. This is a bigger uplift than Zen 3 was over Zen 2 if the leaks are to be believed.

I would not worry at all at this stage. Now Intel may have a real surprise for RL and Zen4 may well find itself in trouble again at the end of the year but only time will tell. The one thing Intel has going for it is MT performance will be greatly enhanced due to doubling E-cores. AMD I doubt can get that crown back before Zen 5 at best.
If AMD can keep the power efficiency of Zen 3 than even 15% is way better than Intel. Those Alder Lake are hot and consuming tons of power, not recommended.
 
Joined
Oct 27, 2020
Messages
804 (0.52/day)
Zen 4 should be a little bit better in gaming than Raptor Lake but Alder Lake was such a great improvement over previous architecture regarding gaming, that's why Intel in their official slides had a reference about Alder Lake's gaming performance:


Now seriously, the only thing that I would bet is that since 7nm CPU chiplet+14nm I/O die was better than Intel's 7nm 12th gen attempt in performance/Watt, I can't find a reason why a 5nm CPU chiplet+6nm I/O die wouldn't be better than Intel's 7nm 13th gen attempt, especially since on Intel's side we would also have double the efficiency cores and much higher cache and higher frequency also according to rumors.
 
Joined
Jun 16, 2013
Messages
1,457 (0.35/day)
Location
Australia
...
Personally I am mostly invested in the FLCK. Hopefully it is 3000MHz (DDR5-6000) for starting. Just speculation of course before the NDAs steal my soul and I become aware of the truth. Beside the AM5 memory, I like the idea of more PCIe 5.0 Lanes. Dual chipset is a interesting approach as a solution. Will the consumer market need Gen5 NVMe drives? No way! but, it does make sense for content creators.

AMD iGPU??? I want to see a option without it. A waste of silicon in my opinion. Only time iGPU is useful is video encoding (Intel QUICKSYNC), laptops and low-end pre-builts. Give me a CPU at a lower price point and gut the iGPU for my desktop!
From a gamers point of view, devs still haven't optimised for PCIe 4.0 yet, let alone 5.0. 3.0 is still enough for about 99% of games atm, all this summarized from TPU reviews on storage this year too.
As has been mentioned before in this thread, iGPU is very handy indeed in case of borked driver upgrades or early failing stages of dGPUs. I would expect the option of turning it off completely in bios as is the case already with Rocket lake K cpus.
 
Joined
Mar 21, 2016
Messages
2,508 (0.78/day)
That AM5 CPU is going to be hard to get thermal paste off with all those gaps on the outside :fear:
You could just use a thermal grizzle pad to avoid that issue not to mention they don't dry out even if they they are a touch worse than paste at thermal conductivity. They probably are better than dried out paste that hasn't been reapplied after a period however imagine. It would be really interesting to compare it against paste that's been in use for a year.
 
Joined
Dec 1, 2020
Messages
493 (0.33/day)
Processor Ryzen 5 7600X
Motherboard ASRock B650M PG Riptide
Cooling Noctua NH-D15
Memory DDR5 6000Mhz CL28 32GB
Video Card(s) Nvidia Geforce RTX 3070 Palit GamingPro OC
Storage Corsair MP600 Force Series Gen.4 1TB
Stop this dispute and just calculate the rendered area for given time.
If 12900k can render 1 image for 297s and 7950x can render the same image for 204s then Let the ryzen to render second image for 93s. That is the both CPUs will render for 297s, then the 12900k will have 1 full rendered image while 7950x for the same time will render 1.45 images or 45% faster. 7950x can finish 45% more work per unit time

Example for 45% faster rendering
1653363324980.png
 
Last edited:

TiN

Joined
Aug 28, 2009
Messages
215 (0.04/day)
Location
USA
System Name selfmade caseless :D
Processor Intel ES
Motherboard EVGA X299 DARK ES :)
Cooling LN2
Memory G.SKILL DDR4 @ 3600MHz
Video Card(s) GTX Kingpin's
Storage Intel P4500 4TB
Display(s) Philips BDM4350
Case none
Audio Device(s) Creative X-Fi
Power Supply EVGA NEX 1500W's
Mouse None (trackball)
Keyboard Steelseries APEX RAW and Corsair K-something
Software W2k8 R2 64bit SP1, FreeBSD 12
Benchmark Scores http://www.hwbot.org/community/user/tin?oldstyle=true
Interesting how CCX dies seem to have gold plating , most likely for soldering to IHS, while chipset die just usual silicon color, perhaps just for usual PCM paste :)
 
Joined
May 31, 2016
Messages
4,452 (1.42/day)
Location
Currently Norway
System Name Bro2
Processor Ryzen 5800X
Motherboard Gigabyte X570 Aorus Elite
Cooling Corsair h115i pro rgb
Memory 32GB G.Skill Flare X 3200 CL14 @3800Mhz CL16
Video Card(s) Powercolor 6900 XT Red Devil 1.1v@2400Mhz
Storage M.2 Samsung 970 Evo Plus 500MB/ Samsung 860 Evo 1TB
Display(s) LG 27UD69 UHD / LG 27GN950
Case Fractal Design G
Audio Device(s) Realtec 5.1
Power Supply Seasonic 750W GOLD
Mouse Logitech G402
Keyboard Logitech slim
Software Windows 10 64 bit
That ... is a very poor way of measuring IPC. Fixed frequency is ... fine, though not ideal (as IPC is highly dependent on caches, interconnects and RAM, locking clocks can present an unrealistic image of actual real-world IPC as you're changing the relative speeds of those separate clock domains), but a single application is not an IPC benchmark. If you're going to talk about real-world IPC (and not architectural-level execution ports etc.), you need a broad range of applications to give any kind of representative overview. A single application just isn't enough.
I get your point but still. Depending on which apps you use and how your system is configured the IPC number will be different. Especially with rumors and other simple benchmarks on the internet it is really hard to determine what the performance will be exactly. Since it can change and there are so many other things in the equation, it is not possible to say.
Not saying this is right way to do it, I'm saying it gives some sort of information about the performance. I think you meant, real-world performance not IPC.
 
Last edited:

Frick

Fishfaced Nincompoop
Joined
Feb 27, 2006
Messages
19,708 (2.86/day)
Location
w
System Name Black MC in Tokyo
Processor Ryzen 5 7600
Motherboard MSI X670E Gaming Plus Wifi
Cooling Be Quiet! Pure Rock 2
Memory 2 x 16GB Corsair Vengeance @ 6000Mhz
Video Card(s) XFX 6950XT Speedster MERC 319
Storage Kingston KC3000 1TB | WD Black SN750 2TB |WD Blue 1TB x 2 | Toshiba P300 2TB | Seagate Expansion 8TB
Display(s) Samsung U32J590U 4K + BenQ GL2450HT 1080p
Case Fractal Design Define R4
Audio Device(s) Plantronics 5220, Nektar SE61 keyboard
Power Supply Corsair RM850x v3
Mouse Logitech G602
Keyboard Dell SK3205
Software Windows 10 Pro
Benchmark Scores Rimworld 4K ready!
Again, No.

Again, using the same example as above
Comparing 1s and 200s jobs
Using YOUR equations
1s is 99.5% faster than 200s and 200s is 19900% slower than 1s
So your statement " Presenting those two as 90% and 95% faster is a far more accurate representation of their absolute time expenditure." is totally flawed because the 19900% is STILL THERE.

The only thing there is "faster" and "slower" doesn't apply to "Time" alone.
"Time" is just "No. of seconds" and there is no "Speed" there.
"Speed" only happens when "Something divided by Time"
You cannot describe something is "faster" or "slower" without a "Speed" element
Therefore in the equation you must calculate the "Speed" first
And that's the fundamental flaw in your statements / equations.

"No. of seconds" alone has no meaning
"Work done within No. of seconds" is what we needed.
1s and 200s has no meaning if the amount of work done is unknown.
The person could have spent 1s and get 1 work done and stop there while the other guy spent 200s and did 300 work done.
Therefore the "Amount of work done" must be put into the equation to calculate "Speed" before anyone could describe who is "Faster".

Comparing 204s vs 297s alone
You can say 204s is 31% "Smaller" or "Shorter" or "Less" or "reduction" than 297s, but you should never, never say it is "Faster" than 297s without a work done in the equation.

In this CPU case it is "1 test case done in 204 seconds" vs "1 test case done in 297 seconds"
So the "1" must be put into the equation
1/204 = 0.00490
1/297 = 0.00337
(490-337)/490 = 31% slower
(490-337)/337 = 45% Faster
Without the "1" , your equation does not represent any "Speed" element.

Please do realize we are comparing "How quickly the CPU works"
Your explanations only represents "Time reductions in 2 tests"

Replace the "Faster" word with "shorter" and your statements are totally fine.
But if you need to use the word "Faster" please include "Speed" into your equations.

Enough said

But we know the amount of work already, from context. The primary school version of this would be something like "Kim finished juggling melons in 204 seconds. Zim finished juggling melons in 297 seconds. How much faster than Zim was Kim, expressed as percent?"
 
Joined
May 2, 2017
Messages
7,762 (2.77/day)
Location
Back in Norway
System Name Hotbox
Processor AMD Ryzen 7 5800X, 110/95/110, PBO +150Mhz, CO -7,-7,-20(x6),
Motherboard ASRock Phantom Gaming B550 ITX/ax
Cooling LOBO + Laing DDC 1T Plus PWM + Corsair XR5 280mm + 2x Arctic P14
Memory 32GB G.Skill FlareX 3200c14 @3800c15
Video Card(s) PowerColor Radeon 6900XT Liquid Devil Ultimate, UC@2250MHz max @~200W
Storage 2TB Adata SX8200 Pro
Display(s) Dell U2711 main, AOC 24P2C secondary
Case SSUPD Meshlicious
Audio Device(s) Optoma Nuforce μDAC 3
Power Supply Corsair SF750 Platinum
Mouse Logitech G603
Keyboard Keychron K3/Cooler Master MasterKeys Pro M w/DSA profile caps
Software Windows 10 Pro
I get your point but still. Depending on which apps you use and how your system is configured the IPC number will be different. Especially with rumors and other simple benchmarks on the internet it is really hard to determine what the performance will be exactly. Since it can change and there are so many other things in the equation, it is not possible to say.
Not saying this is right way to do it, I'm saying it gives some sort of information about the performance. I think you meant, real-world performance not IPC.
No, I meant IPC. What that graph shows isn't IPC, it's clock-normalized real world (Cinebench) performance. As for the variability through the That's why you make a decision on how to configure test systems - say, whether to stick to the fastest supported JEDEC RAM spec, to go for "reasonably attainable XMP" etc. Either way, you make a decision and stick to it. And while motherboard choice does affect performance in some ways, most of those are down to power delivery and boosting - i.e. again something you can control for. And then you run a representative suite of benchmarks, not just one.

Using a single benchmark to indicate IPC is just as invalid as using a single benchmark to indicate the overall performance of a product. Or, arguably, even more invalid, as using the term IPC purports to speak to more fundamental architectural characteristics, which is then undermined all the more by using a single benchmark with its specific characteristics, quirks and specific performance requirements. IPC as a high-level description of real world performance per clock must be calculated across a wide range of tests in order to have any validity whatsoever.

Again, No.

Again, using the same example as above
Comparing 1s and 200s jobs
Using YOUR equations
1s is 99.5% faster than 200s and 200s is 19900% slower than 1s
So your statement " Presenting those two as 90% and 95% faster is a far more accurate representation of their absolute time expenditure." is totally flawed because the 19900% is STILL THERE.
Again: these are saying the same thing. What does "the 19900% is still there" even mean? You understand that these numbers are relative representations of difference, right? That they don't exist in an absolute sense, but only exist as comparisons relative to a baseline? There is no contradiction here.
The only thing there is "faster" and "slower" doesn't apply to "Time" alone.
"Time" is just "No. of seconds" and there is no "Speed" there.
"Speed" only happens when "Something divided by Time"
You cannot describe something is "faster" or "slower" without a "Speed" element
Therefore in the equation you must calculate the "Speed" first
And that's the fundamental flaw in your statements / equations.

"No. of seconds" alone has no meaning
"Work done within No. of seconds" is what we needed.
1s and 200s has no meaning if the amount of work done is unknown.
The person could have spent 1s and get 1 work done and stop there while the other guy spent 200s and did 300 work done.
Therefore the "Amount of work done" must be put into the equation to calculate "Speed" before anyone could describe who is "Faster".

Comparing 204s vs 297s alone
You can say 204s is 31% "Smaller" or "Shorter" or "Less" or "reduction" than 297s, but you should never, never say it is "Faster" than 297s without a work done in the equation.
....This is accounted for in my equations, as "297" or "204" isn't seconds, it's seconds to finish the work. The explicit context here is the question of "how much time does it take each of the CPUs to finish this task", not "which duration is longest". We wouldn't be talking about these numbers if they weren't the time to finish a workload, thus they can only be understood as seconds/workload, not seconds. If I was speaking of time alone, as you say I wouldn't be using terms like "faster" or "slower", I would be talking about "less" or "more" time. But I'm not. I'm talking about time to finish the work.
In this CPU case it is "1 test case done in 204 seconds" vs "1 test case done in 297 seconds"
So the "1" must be put into the equation
1/204 = 0.00490
1/297 = 0.00337
(490-337)/490 = 31% slower
(490-337)/337 = 45% Faster
Without the "1" , your equation does not represent any "Speed" element.
But this is where you're reversing things. Again: you're calculating a rate: work-per-second, not seconds-per-workload. The numbers given are seconds-per-workload. You are transforming this into something that the data given is not - a rate of fractional units of work per second. The calculation for seconds per workloads - the speed in this context - is 204/1 and 297/1, which means the division by one is omitted as it is entirely redundant. You don't need to write out 204/1=204. Nobody before you here, and certainly not AMD's marketing team, has said anything about how many units of a given workload the CPU can complete per second. They compared the time spent to finish a specific workload. That's the opposite equation of what you're drawing up here.

Your base equation above is the following:
1 second/X seconds per workload = Y workload per second.
You're calculating percentages from this unit you're producing: workloads per second.
I don't have an equivalent equation, as my percentages are calculated from the unit given: secondsd per workload. You are explicitly transforming the data given into a different unit; I am not. This is where your confusion stems from. No such transformation is necessary in order to compare the speed of these processors, as we're not talking about their rate of work, but their relative speed in completing a given task.
Please do realize we are comparing "How quickly the CPU works"
Your explanations only represents "Time reductions in 2 tests"
... but that's what we're comparing: the time difference between two CPUs finishing a single workload. We are not comparing "how quickly the CPU works". Not at all. If, for example, we were talking clock speeds (which are a rate), then you would be correct. But we are talking a comparison of the duration for a single workload.
 
D

Deleted member 24505

Guest
Until Zen 4 appears it is all piss in the wind as nobody really knows
 
Top