Yes & I picked that drive specifically because it is by far the most efficient one I've seen to date, less heat could mean better "endurance" & certainly leads to a more consistent performance. It is a PCIe 3.0 drive so it's nowhere near what the top drives in this segment can do & you realize they cost a ton more, don't you? The 980 pro isn't even out yet, I'm willing to bet that it'll near about top the charts across the board perhaps with the exception of class leading efficiency. Now if you've been following the PC market you'll also know that chasing the last 1% or indeed last 0.1% of performance costs way more than the first 90~99% even now.I've seen that several times for those who work with HD+ video editing 9-5 day-in, day-out after a few years.
"Best performing" yet your charts say "power efficiency" not performance. So that SK P31 drive you picked out certainly looks to be a good laptop drive, but given that it tops out at just 1TB capacity with TLC hardly puts it in the same market as the heavy-duty Samsung PRO's which max at 4TB (MLC) / 8TB (TLC). People don't buy the huge MLC drives just as ordinary boot drives, they are for pros with higher data usage.
They're hardly unrelated either. That's why warranties and TBW have been falling from 10yr (MLC PRO) to 5yr (TLC EVO) to just 3yr (QLC QVO). There is an underlying reason for that... (Hint: Can you imagine if 2017-era Gold rated PSU's were sold with 10yr warranties whilst 2020-era Platinum rated ones of the same brand were sold with just 3yr warranties. Would certainly raise a few eyebrows, eh?...)
I would have thought that's obvious - the fewer P/E cycles, the faster a drive will burn through it's flash-"writeability" given the same load. On top of that, 2-bit MLC -> 3-bit TLC -> 4-bit QLC also reduces the voltage state overhead vs voltage drift / cell leakage making the latter drives highly unsuitable for rarely powered up external backup drives (since they won't be able to silent background refresh when unpowered and the time between power ups could be long enough to cause problems with a QLC that has barely 7% overhead per voltage state that won't be there on MLC that has 33% or 4.5x the overhead.
I'll ask again, can you link me to studies which map out let's say a 1000 possible use cases for these drives & covering the NAND "endurance" part? You know why that's not happening ~ the answer's in my last reply!