News Posts matching #GH200

Return to Keyword Browsing

Supermicro Expands AI Solutions with the Upcoming NVIDIA HGX H200 and MGX Grace Hopper Platforms Featuring HBM3e Memory

Supermicro, Inc., a Total IT Solution Provider for AI, Cloud, Storage, and 5G/Edge, is expanding its AI reach with the upcoming support for the new NVIDIA HGX H200 built with H200 Tensor Core GPUs. Supermicro's industry leading AI platforms, including 8U and 4U Universal GPU Systems, are drop-in ready for the HGX H200 8-GPU, 4-GPU, and with nearly 2x capacity and 1.4x higher bandwidth HBM3e memory compared to the NVIDIA H100 Tensor Core GPU. In addition, the broadest portfolio of Supermicro NVIDIA MGX systems supports the upcoming NVIDIA Grace Hopper Superchip with HBM3e memory. With unprecedented performance, scalability, and reliability, Supermicro's rack scale AI solutions accelerate the performance of computationally intensive generative AI, large language Model (LLM) training, and HPC applications while meeting the evolving demands of growing model sizes. Using the building block architecture, Supermicro can quickly bring new technology to market, enabling customers to become more productive sooner.

Supermicro is also introducing the industry's highest density server with NVIDIA HGX H100 8-GPUs systems in a liquid cooled 4U system, utilizing the latest Supermicro liquid cooling solution. The industry's most compact high performance GPU server enables data center operators to reduce footprints and energy costs while offering the highest performance AI training capacity available in a single rack. With the highest density GPU systems, organizations can reduce their TCO by leveraging cutting-edge liquid cooling solutions.

GIGABYTE Demonstrates the Future of Computing at Supercomputing 2023 with Advanced Cooling and Scaled Data Centers

GIGABYTE Technology, Giga Computing, a subsidiary of GIGABYTE and an industry leader in high-performance servers, server motherboards, and workstations, continues to be a leader in cooling IT hardware efficiently and in developing diverse server platforms for Arm and x86 processors, as well as AI accelerators. At SC23, GIGABYTE (booth #355) will showcase some standout platforms, including for the NVIDIA GH200 Grace Hopper Superchip and next-gen AMD Instinct APU. To better introduce its extensive lineup of servers, GIGABYTE will address the most important needs in supercomputing data centers, such as how to cool high-performance IT hardware efficiently and power AI that is capable of real-time analysis and fast time to results.

Advanced Cooling
For many data centers, it is becoming apparent that their cooling infrastructure must radically shift to keep pace with new IT hardware that continues to generate more heat and requires rapid heat transfer. Because of this, GIGABYTE has launched advanced cooling solutions that allow IT hardware to maintain ideal performance while being more energy-efficient and maintaining the same data center footprint. At SC23, its booth will have a single-phase immersion tank, the A1P0-EA0, which offers a one-stop immersion cooling solution. GIGABYTE is experienced in implementing immersion cooling with immersion-ready servers, immersion tanks, oil, tools, and services spanning the globe. Another cooling solution showcased at SC23 will be direct liquid cooling (DLC), and in particular, the new GIGABYTE cold plates and cooling modules for the NVIDIA Grace CPU Superchip, NVIDIA Grace Hopper Superchip, AMD EPYC 9004 processor, and 4th Gen Intel Xeon processor.

ASUS Demonstrates AI and Immersion-Cooling Solutions at SC23

ASUS today announced a showcase of the latest AI solutions to empower innovation and push the boundaries of supercomputing, at Supercomputing 2023 (SC23) in Denver, Colorado, from 12-17 November, 2023. ASUS will demonstrate the latest AI advances, including generative-AI solutions and sustainability breakthroughs with Intel, to deliver the latest hybrid immersion-cooling solutions, plus lots more - all at booth number 257.

At SC23, ASUS will showcase the latest NVIDIA-qualified ESC N8A-E12 HGX H100 eight-GPU server empowered by dual-socket AMD EPYC 9004 processors and is designed for enterprise-level generative AI with market-leading integrated capabilities. Related to NVIDIA announcement on the latest NVIDIA H200 Tensor Core GPU at SC23, which is the first GPU to offer HBM3E for faster, larger memory to fuel the acceleration of generative AI and large language models, ASUS will offer an update of H100-based system with an H200-based drop-in replacement in 2024.

NVIDIA Supercharges Hopper, the World's Leading AI Computing Platform

NVIDIA today announced it has supercharged the world's leading AI computing platform with the introduction of the NVIDIA HGX H200. Based on NVIDIA Hopper architecture, the platform features the NVIDIA H200 Tensor Core GPU with advanced memory to handle massive amounts of data for generative AI and high performance computing workloads.

The NVIDIA H200 is the first GPU to offer HBM3e - faster, larger memory to fuel the acceleration of generative AI and large language models, while advancing scientific computing for HPC workloads. With HBM3e, the NVIDIA H200 delivers 141 GB of memory at 4.8 terabytes per second, nearly double the capacity and 2.4x more bandwidth compared with its predecessor, the NVIDIA A100. H200-powered systems from the world's leading server manufacturers and cloud service providers are expected to begin shipping in the second quarter of 2024.

NVIDIA Grace Hopper Superchip Powers 40+ AI Supercomputers

Dozens of new supercomputers for scientific computing will soon hop online, powered by NVIDIA's breakthrough GH200 Grace Hopper Superchip for giant-scale AI and high performance computing. The NVIDIA GH200 enables scientists and researchers to tackle the world's most challenging problems by accelerating complex AI and HPC applications running terabytes of data.

At the SC23 supercomputing show, NVIDIA today announced that the superchip is coming to more systems worldwide, including from Dell Technologies, Eviden, Hewlett Packard Enterprise (HPE), Lenovo, QCT and Supermicro. Bringing together the Arm-based NVIDIA Grace CPU and Hopper GPU architectures using NVIDIA NVLink-C2C interconnect technology, GH200 also serves as the engine behind scientific supercomputing centers across the globe. Combined, these GH200-powered centers represent some 200 exaflops of AI performance to drive scientific innovation.

Supermicro Starts Shipments of NVIDIA GH200 Grace Hopper Superchip-Based Servers

Supermicro, Inc., a Total IT Solution manufacturer for AI, Cloud, Storage, and 5G/Edge, is announcing one of the industry's broadest portfolios of new GPU systems based on the NVIDIA reference architecture, featuring the latest NVIDIA GH200 Grace Hopper and NVIDIA Grace CPU Superchip. The new modular architecture is designed to standardize AI infrastructure and accelerated computing in compact 1U and 2U form factors while providing ultimate flexibility and expansion ability for current and future GPUs, DPUs, and CPUs. Supermicro's advanced liquid-cooling technology enables very high-density configurations, such as a 1U 2-node configuration with 2 NVIDIA GH200 Grace Hopper Superchips integrated with a high-speed interconnect. Supermicro can deliver thousands of rack-scale AI servers per month from facilities worldwide and ensures Plug-and-Play compatibility.

"Supermicro is a recognized leader in driving today's AI revolution, transforming data centers to deliver the promise of AI to many workloads," said Charles Liang, president and CEO of Supermicro. "It is crucial for us to bring systems that are highly modular, scalable, and universal for rapidly evolving AI technologies. Supermicro's NVIDIA MGX-based solutions show that our building-block strategy enables us to bring the latest systems to market quickly and are the most workload-optimized in the industry. By collaborating with NVIDIA, we are helping accelerate time to market for enterprises to develop new AI-enabled applications, simplifying deployment and reducing environmental impact. The range of new servers incorporates the latest industry technology optimized for AI, including NVIDIA GH200 Grace Hopper Superchips, BlueField, and PCIe 5.0 EDSFF slots."

NVIDIA GH200 Superchip Aces MLPerf Inference Benchmarks

In its debut on the MLPerf industry benchmarks, the NVIDIA GH200 Grace Hopper Superchip ran all data center inference tests, extending the leading performance of NVIDIA H100 Tensor Core GPUs. The overall results showed the exceptional performance and versatility of the NVIDIA AI platform from the cloud to the network's edge. Separately, NVIDIA announced inference software that will give users leaps in performance, energy efficiency and total cost of ownership.

GH200 Superchips Shine in MLPerf
The GH200 links a Hopper GPU with a Grace CPU in one superchip. The combination provides more memory, bandwidth and the ability to automatically shift power between the CPU and GPU to optimize performance. Separately, NVIDIA HGX H100 systems that pack eight H100 GPUs delivered the highest throughput on every MLPerf Inference test in this round. Grace Hopper Superchips and H100 GPUs led across all MLPerf's data center tests, including inference for computer vision, speech recognition and medical imaging, in addition to the more demanding use cases of recommendation systems and the large language models (LLMs) used in generative AI.

Tata Partners With NVIDIA to Build Large-Scale AI Infrastructure

NVIDIA today announced an extensive collaboration with Tata Group to deliver AI computing infrastructure and platforms for developing AI solutions. The collaboration will bring state-of-the-art AI capabilities within reach to thousands of organizations, businesses and AI researchers, and hundreds of startups in India. The companies will work together to build an AI supercomputer powered by the next-generation NVIDIA GH200 Grace Hopper Superchip to achieve performance that is best in class.

"The global generative AI race is in full steam," said Jensen Huang, founder and CEO of NVIDIA. "Data centers worldwide are shifting to GPU computing to build energy-efficient infrastructure to support the exponential demand for generative AI.

NVIDIA Partners with Reliance to Advance AI in India

In a major step to support India's industrial sector, NVIDIA and Reliance Industries today announced a collaboration to develop India's own foundation large language model trained on the nation's diverse languages and tailored for generative AI applications to serve the world's most populous nation. The companies will work together to build AI infrastructure that is over an order of magnitude more powerful than the fastest supercomputer in India today. NVIDIA will provide access to the most advanced NVIDIA GH200 Grace Hopper Superchip and NVIDIA DGX Cloud, an AI supercomputing service in the cloud. GH200 marks a fundamental shift in computing architecture that provides exceptional performance and massive memory bandwidth.

The NVIDIA-powered AI infrastructure is the foundation of the new frontier into AI for Reliance Jio Infocomm, Reliance Industries' telecom arm. The global AI revolution is transforming industries and daily life. To serve India's vast potential in AI, Reliance will create AI applications and services for their 450 million Jio customers and provide energy-efficient AI infrastructure to scientists, developers and startups across India.

Google Cloud and NVIDIA Expand Partnership to Advance AI Computing, Software and Services

Google Cloud Next—Google Cloud and NVIDIA today announced new AI infrastructure and software for customers to build and deploy massive models for generative AI and speed data science workloads.

In a fireside chat at Google Cloud Next, Google Cloud CEO Thomas Kurian and NVIDIA founder and CEO Jensen Huang discussed how the partnership is bringing end-to-end machine learning services to some of the largest AI customers in the world—including by making it easy to run AI supercomputers with Google Cloud offerings built on NVIDIA technologies. The new hardware and software integrations utilize the same NVIDIA technologies employed over the past two years by Google DeepMind and Google research teams.

NVIDIA Unveils Next-Generation GH200 Grace Hopper Superchip Platform With HMB3e

NVIDIA today announced the next-generation NVIDIA GH200 Grace Hopper platform - based on a new Grace Hopper Superchip with the world's first HBM3e processor - built for the era of accelerated computing and generative AI. Created to handle the world's most complex generative AI workloads, spanning large language models, recommender systems and vector databases, the new platform will be available in a wide range of configurations. The dual configuration - which delivers up to 3.5x more memory capacity and 3x more bandwidth than the current generation offering - comprises a single server with 144 Arm Neoverse cores, eight petaflops of AI performance and 282 GB of the latest HBM3e memory technology.

"To meet surging demand for generative AI, data centers require accelerated computing platforms with specialized needs," said Jensen Huang, founder and CEO of NVIDIA. "The new GH200 Grace Hopper Superchip platform delivers this with exceptional memory technology and bandwidth to improve throughput, the ability to connect GPUs to aggregate performance without compromise, and a server design that can be easily deployed across the entire data center."

NVIDIA Proposes that AI Will Accelerate Climate Research Innovation

AI and accelerated computing will help climate researchers achieve the miracles they need to achieve breakthroughs in climate research, NVIDIA founder and CEO Jensen Huang said during a keynote Monday at the Berlin Summit for the Earth Virtualization Engines initiative. "Richard Feynman once said that "what I can't create, I don't understand" and that's the reason why climate modeling is so important," Huang told 180 attendees at the Harnack House in Berlin, a storied gathering place for the region's scientific and research community. "And so the work that you do is vitally important to policymakers to researchers to the industry," he added.

To advance this work, the Berlin Summit brings together participants from around the globe to harness AI and high-performance computing for climate prediction. In his talk, Huang outlined three miracles that will have to happen for climate researchers to achieve their goals, and touched on NVIDIA's own efforts to collaborate with climate researchers and policymakers with its Earth-2 efforts. The first miracle required will be to simulate the climate fast enough, and with a high enough resolution - on the order of just a couple of square kilometers.
Return to Keyword Browsing
Apr 15th, 2025 16:02 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts