News Posts matching #LPE

Return to Keyword Browsing

Intel "Arrow Lake-H" SKUs Leak: Up to 16 Cores, with LPE Cores Resurfacing

As we await the launch of Intel's "Arrow Lake-S" Core Ultra 200S series of processors for desktops, we are getting some new leaks about Intel's mainstream mobile "Arrow Lake-H" update. A month ago, we got the specification table of the high-end mobile "Arrow Lake-HX," and now, thanks to Jaykihn X, we have the mainstream laptop chip specifications as well. The top-of-the-line includes Intel Core Ultra 9 285H, a 45 W TDP SKU with six P-cores, eight E-cores, and two LPE cores. The CPU packs integrated Xe2 graphics with eight cores and 24 MB of total L3 cache and has a maximum boost of 5.4 GHz for P-cores.

Moving down the stack, there are Core Ultra 7 265H and Core Ultra 5 255H SKUs, which feature the same P/E/LPE core configuration. However, these SKUs are rated for 28 W TDP, having lower maximum frequencies and the same iGPU configuration. This time, we also have two Core Ultra 3 SKUs, with Core Ultra 3 235H and 225H bringing four P-cores, eight E-cores, and two LPE-cores in the 28 W package. The Core Ultra 3 235H has eight Xe2 cores in its iGPU, while the lowest-end Core Ultra 3 225H has only seven Xe2 iGPU cores. For a complete set of specifications, including all clock speeds in base and boost, please check out the table below.

Samsung's 5 nm Node in Production, First SoCs to Arrive Soon

During its Q3 earnings call, Samsung Electronics has provided everyone with an update on its foundry and node production development. In the past year or so, Samsung's foundry has been a producer of a 7 nm LPP (Low Power Performance) node as its smallest node. That is now changed as Samsung has started the production of the 5 nm LPE (Low Power Early) semiconductor manufacturing node. In the past, we have reported that the company struggled with yields of its 5 nm process, however, that seems to be ironed out and now the node is in full production. To contribute to the statement that the new node is doing well, we also recently reported that Samsung will be the sole manufacturer of Qualcomm Snapdragon 875 5G SoC.

The new 5 nm semiconductor node is a marginal improvement over the past 7 nm node. It features a 10% performance improvement that is taking the same power and chip complexity or a 20% power reduction of the same processor clocks and design. When it comes to density, the company advertises the node with x1.33 times increase in transistor density compared to the previous node. The 5LPE node is manufactured using the Extreme Ultra-Violet (EUV) methodology and its FinFET transistors feature new characteristics like Smart Difusion Break isolation, flexible contact placement, and single-fin devices for low power applications. The node is design-rule compatible with the previous 7 nm LPP node, so the existing IP can be used and manufactured on this new process. That means that this is not a brand new process but rather an enhancement. First products are set to arrive with the next generation of smartphone SoCs, like the aforementioned Qualcomm Snapdragon 875.
Return to Keyword Browsing
Nov 21st, 2024 06:34 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts