Marvell Launches Industry's First 1.6T Ethernet PHY with 100G PAM4 I/Os in 5nm
Marvell today introduced the industry's first 1.6T Ethernet PHY with 100G PAM4 electrical input/outputs (I/Os) in 5nm. The demand for increased bandwidth in the data center to support massive data growth is driving the transition to 1.6T (Terabits per second) in the Ethernet backbone. 100G serial I/Os play a critical role in the cloud infrastructure to help move data across compute, networking and storage in a power-efficient manner. The new Marvell Alaska C PHY is designed to accelerate the transition to 100G serial interconnects and doubles the bandwidth speeds of the previous generation of PHYs to bring scalability for performance-critical cloud workloads and applications such as artificial intelligence and machine learning.
Marvell's 1.6T Ethernet PHY solution, the 88X93160, enables next-generation 100G serial-based 400G and 800G Ethernet links for high-density switches. The doubling of the signaling rate creates signal integrity challenges, driving the need for retimer devices for high port count switch designs. It's critical that retimer and gearboxes used for these applications are extremely power efficient. Implemented in the latest 5nm node, the Marvell 800GbE PHY provides a 40% savings in I/O power compared to existing 50G PAM4 based I/Os.
Marvell's 1.6T Ethernet PHY solution, the 88X93160, enables next-generation 100G serial-based 400G and 800G Ethernet links for high-density switches. The doubling of the signaling rate creates signal integrity challenges, driving the need for retimer devices for high port count switch designs. It's critical that retimer and gearboxes used for these applications are extremely power efficient. Implemented in the latest 5nm node, the Marvell 800GbE PHY provides a 40% savings in I/O power compared to existing 50G PAM4 based I/Os.