News Posts matching #Infineon

Return to Keyword Browsing

Germany Readies €2 Billion in New Semiconductor Subsidy Package

Germany is set to invest €2 billion in the semiconductor industry after recent setbacks, according to TrendForce via Liberty Times citing Bloomberg. The German government's new funding is in response to the chip sector's problems, including Intel's delay of the Magdeburg factory and global disruptions in the semiconductor supply chain. The investment will support 10 to 15 projects from wafer production to microchip assembly to strengthen Germany's and Europe's microelectronics ecosystem. This is in line with the European Chips Act which aims to increase the EU's global production capacity to 20% by 2030.

Intel's €30 billion Magdeburg factory delay and other cancelled chip projects from Wolfspeed and ZF Friedrichshafen AG have created uncertainty in the German market. The Ministry of Economic Affairs is now calling for new applications for funding, with up to €3 billion available. The timing of the semiconductor investment follows the global supply chain disruptions caused by the pandemic and the increasing geopolitical tensions between the US, China and Taiwan. Germany is following a broader trend of governments investing in local semiconductor production to increase technological independence and economic resilience. The funding is subject to budget reallocation with the new government after February 2025 elections. In the first round of subsidies from the European Chips Act, Germany allocated resources to two key initiatives: Intel's investment and a collaborative project between Infineon and TSMC in Dresden.

Infineon and Quantinuum Partner to Advance Quantum Computing

Infineon Technologies AG, a global leader in semiconductor solutions, and Quantinuum, a global leader in integrated, full-stack quantum computing, today announced a strategic partnership to develop the future generation of ion traps. This partnership will drive the acceleration of quantum computing and enable progress in fields such as generative chemistry, material science, and artificial intelligence.

"We are thrilled to partner with Quantinuum, a leader in quantum computing, to push the boundaries of quantum computing and generate larger, more powerful machines that solve meaningful real-life problems," said Richard Kuncic, Senior Vice President and General Manager Power Systems at Infineon Technologies. "This collaboration brings together Infineon's state-of-the-art knowledge in process development, fabrication, and quantum processing unit (QPU) technology with Quantinuum's cutting-edge ion-trap design expertise and experience with operating high-performance commercial quantum computers."

Raspberry Pi Announces $12 USB 3 Hub

Most Raspberry Pi single-board computers, with the exception of the Raspberry Pi Zero and A+ form factors, incorporate an on-board USB hub to fan out a single USB connection from the core silicon, and provide multiple downstream USB Type-A ports. But no matter how many ports we provide, sometimes you just need more peripherals than we have ports. And with that in mind, today we're launching the official Raspberry Pi USB 3 Hub, a high-quality four-way USB 3.0 hub for use with your Raspberry Pi or other, lesser, computer.

Key features include:
  • A single upstream USB 3.0 Type-A connector on an 8 cm captive cable
  • Four downstream USB 3.0 Type-A ports
  • Aggregate data transfer speeds up to 5 Gbps
  • USB-C socket for optional external 3 A power supply (sold separately)

Infineon Unveils the World's Thinnest Silicon Power Wafer

After announcing the world's first 300-millimeter gallium nitride (GaN) power wafer and opening the world's largest 200-millimeter silicon carbide (SiC) power fab in Kulim, Malaysia, Infineon Technologies AG has unveiled the next milestone in semiconductor manufacturing technology. Infineon has reached a breakthrough in handling and processing the thinnest silicon power wafers ever manufactured, with a thickness of only 20 micrometers and a diameter of 300 millimeters, in a high-scale semiconductor fab. The ultra-thin silicon wafers are only a quarter as thick as a human hair and half as thick as current state-of-the-art wafers of 40-60 micrometers.

"The world's thinnest silicon wafer is proof of our dedication to deliver outstanding customer value by pushing the technical boundaries of power semiconductor technology," said Jochen Hanebeck, CEO at Infineon Technologies. "Infineon's breakthrough in ultra-thin wafer technology marks a significant step forward in energy-efficient power solutions and helps us leverage the full potential of the global trends decarbonization and digitalization. With this technological masterpiece, we are solidifying our position as the industry's innovation leader by mastering all three relevant semiconductor materials: Si, SiC and GaN."

Infineon Introduces the Industry's First 20 Gbps Universal USB Peripheral Controller

Infineon Technologies AG today announced the addition of the EZ-USB FX20 programmable USB peripheral controller to its EZ-USB product family. It enables developers to create USB devices that meet the highest performance requirements in AI, image processing and emerging applications. The EZ-USB FX20 peripheral controller offers high-speed connectivity with USB 20 Gbps and LVDS interfaces, increasing the total bandwidth up to six times over its predecessor, the EZ-USB FX3.

"With the growing popularity of USB devices, the demand for compatible and adaptable USB controllers is increasing," said Ganesh Subramaniam, Senior Vice President and General Manager of the Wired Connectivity Solutions Product Line at Infineon. "Therefore, we are continuously improving the features and performance of our EZ-USB peripheral controllers and are pleased to support developers with our new addition to the product family, providing them with a flexible component to create powerful and advanced applications."

Infineon Announces World's First 300 mm Power Gallium Nitride (GaN) Technology

Infineon Technologies AG today announced that the company has succeeded in developing the world's first 300 mm power gallium nitride (GaN) wafer technology. Infineon is the first company in the world to master this groundbreaking technology in an existing and scalable high-volume manufacturing environment. The breakthrough will help substantially drive the market for GaN-based power semiconductors. Chip production on 300 mm wafers is technologically more advanced and significantly more efficient compared to 200 mm wafers, since the bigger wafer diameter offers 2.3 times more chips per wafer.

GaN-based power semiconductors find fast adoption in industrial, automotive, and consumer, computing & communication applications, including power supplies for AI systems, solar inverters, chargers and adapters, and motor-control systems. State-of-the art GaN manufacturing processes lead to improved device performance resulting in benefits in end customers' applications as it enables efficiency performance, smaller size, lighter weight, and lower overall cost. Furthermore, 300 mm manufacturing ensures superior customer supply stability through scalability.

Infineon Resolves 15-Year Qimonda Dispute with €800M Settlement

After nearly 15 years of legal disputes, Infineon Technologies and Qimonda's insolvency administrator have reached a final settlement, with Infineon agreeing to pay €800 million. The conflict centered on the valuation of memory business assets that Infineon spun off in 2006 to create Qimonda, once a global leader in memory chip manufacturing with 13,500 employees worldwide.

Qimonda's journey was short-lived. It debuted on the New York Stock Exchange in August 2006 but filed for insolvency by January 2009. Legal proceedings initiated in 2010 focused on claims that Qimonda's balance sheet was underfunded during the spin-off. The insolvency administrator alleged that the transferred memory business was undervalued, leading to a lawsuit for reimbursement of the share value discrepancy.

TSMC Rumoured to Start Construction on German Fab Within the Next Few Weeks

After many back and forths, it now appears that TSMC is finally getting ready to start construction of its fab in Dresden, Germany. Multiple news outlets are reporting that TSMC is getting ready to start production on its new fab within the next few weeks, which is ahead of the expected Q4 groundbreaking. That said, TSMC has yet to announce an official date for a groundbreaking ceremony or a date when construction will start, but according to media reports TSMC's Chairman and CEO C.C. Wei will be in Germany at the end of August to sign documents with the German government and during this trip, the groundbreaking ceremony is expected to take place.

Assuming everything goes according to plan, the Dresden fab is expected to start production sometime in late 2027, but it's far from a cutting edge fab, as it'll mainly be supplying the European automotive industry with components. The new fab should start its life with two different process technologies, namely a 28 or 22 nm planar CMOS node as well as a 16 or 12 nm FinFET node. The Dresden fab is said to have a production capacity of around 40,000 12-inch wafers monthly. The new fab is expected to be an investment in excess of €10 billion for TSMC, with the city of Dresden spending an additional €250 million for a special water supply system and enhancements to the power grid. Unlike similar projects, TSMC will not be the sole owner of the new fab, as Infineon, Robert Bosch and NXP are each taking a 10 percent stake in the fab.

Cooler Master Announces Expanded Partnership with Infineon for PSU Components

Cooler Master, a leading provider of PC components, gaming peripherals, and tech lifestyle solutions, has recently announced an expanded partnership with Infineon Technologies AG, a global semiconductor leader in power systems and IoT. This collaboration brings together Cooler Master's expertise in thermal and power design with Infineon's advanced semiconductor technology to introduce the X series high-wattage power supplies. These new power solutions, ranging from 850 W to 2000 W, are engineered to meet the growing demands of high-performance gaming, AI, and industrial applications.

"Cooler Master is thrilled to collaborate with Infineon, leveraging their cutting-edge semiconductor technology to enhance our power supply products," says Jimmy Sha, Cooler Master CEO. "This partnership underscores our commitment to delivering high-performance solutions to meet the evolving needs of our customers." Infineon Technologies is renowned for its cutting-edge power systems and semiconductor solutions, providing reliable and efficient components. This partnership is a significant leap forward in delivering efficient power and innovative thermal management to Cooler Master's power supply products.

Cooler Master Launches X Silent Edge Platinum 850 Fanless PSU

Cooler Master, a leading provider of PC components, gaming peripherals, and tech lifestyle solutions, has today announced the market launch of the X Silent Edge Platinum 850, the world's first 850 W fanless power supply unit (PSU). This revolutionary product is available for preorder in an exclusive early bird bundle. "We recognize that power-hungry applications are becoming the norm for our users," says Jimmy Sha, Cooler Master CEO. "The X Silent Edge Platinum 850 is our answer to those who require robust power for intensive tasks but don't want to compromise on a quiet work or play environment. This product represents our commitment to pushing the boundaries in providing quiet high-performance solutions."

Cooler Master is offering a special preorder campaign for early adopters. Preorder the fanless X Silent Edge Platinum 850 for only $399.99 (reduced from $549.99) and receive a 27-inch FHD 240 Hz Curved Gaming Monitor for free. The GM27-CFX 27" Curved Gaming Monitor is an essential tool for gaming, working, and entertainment. Additionally, the bundle includes an ATX 24 PIN 90° Adapter with Capacitors and an M.2 SSD thermal pad. Preordered units will be delivered by the end of June.

Malaysia Plans to Build the Largest Integrated Circuit Design Park in Southeast Asia

Malaysia is firmly positioning itself as a hub for semiconductor investment, with Prime Minister Anwar Ibrahim stating the country aims to attract over $100 billion in investment into the industry. This aligns with recent trends in the region, such as China's announcement of a massive $47.5 billion investment fund or Micron's plans to build a new chip factory in Hiroshima, Japan by the end of 2027.

As a major player accounting for 13% of global chip testing and packaging, Malaysia has benefited from strong investments by Intel ($7 billion for an advanced packaging plant) and Infineon ($5.4 billion to expand its power chip plant). The country now hopes around 10 local companies will make substantial investments in new facilities focused on chip design and advanced packaging. To support this goal, the Malaysian government plans to allocate $5.3 billion in fiscal backing, along with tax breaks and subsidies. It is targeting these investments to generate revenues between $210 million and $1 billion for the semiconductor industry in Malaysia.
Microchips

Five Leading Semiconductor Industry Players Incorporate New Company, Quintauris, to Drive RISC-V Ecosystem Forward

Semiconductor industry players Robert Bosch GmbH, Infineon Technologies AG, Nordic Semiconductor ASA, NXP Semiconductors, and Qualcomm Technologies, Inc., have formally established Quintauris GmbH. Headquartered in Munich, Germany, the company aims to advance the adoption of RISC-V globally by enabling next-generation hardware development.

The formation of Quintauris was formally announced in August, with the aim to be a single source to enable compatible RISC-V-based products, provide reference architectures, and help establish solutions to be widely used across various industries. The initial application focus will be automotive, but with an eventual expansion to include mobile and IoT.

Second Half Utilization Rate for 8-inch Production Capacity Expected to Drop to 50-60%; Chilly Demand Prospects Until 1Q24

TrendForce research indicates that in 1H23, the utilization rate of 8-inch production capacity primarily benefited from sporadic inventory restocking orders for Driver ICs in the second quarter. Additionally, wafer foundries initiated pricing strategies to encourage clients into early orders, offering solid backup. However, in 2H23, persistent macroeconomic and inventory challenges led to the evaporation of an anticipated demand surge.

Meanwhile, stockpiles in automotive and industrial control segments grew after meeting initial shortages, tempering demand. Under fierce price competition from PMIC leader Texas Instruments (TI), inventory reductions for Fabless and other IDMs were drastically inhibited. With IDMs ushering in output from their new plants and pulling back outsourced orders, this compounded reductions to wafer foundries. This dynamic saw 8-inch production capacity utilization dipping to 50-60% in the second half of the year. Both Tier 1 and Tier 2/3 8-inch wafer foundries saw a more lackluster capacity utilization performance compared to the first half of the year.

TSMC is Building a $10B Fab In Germany

TSMC (TWSE: 2330, NYSE: TSM), Robert Bosch GmbH, Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY), and NXP Semiconductors N.V. (NASDAQ: NXPI) today announced a plan to jointly invest in European Semiconductor Manufacturing Company (ESMC) GmbH, in Dresden, Germany to provide advanced semiconductor manufacturing services. ESMC marks a significant step towards construction of a 300 mm fab to support the future capacity needs of the fast-growing automotive and industrial sectors, with the final investment decision pending confirmation of the level of public funding for this project. The project is planned under the framework of the European Chips Act.

The planned fab is expected to have a monthly production capacity of 40,000 300 mm (12-inch) wafers on TSMC's 28/22 nanometer planar CMOS and 16/12 nanometer FinFET process technology, further strengthening Europe's semiconductor manufacturing ecosystem with advanced FinFET transistor technology and creating about 2,000 direct high-tech professional jobs. ESMC aims to begin construction of the fab in the second half of 2024 with production targeted to begin by the end of 2027.

Leading Semiconductor Industry Players Join Forces to Accelerate RISC-V

Semiconductor industry players Robert Bosch GmbH, Infineon Technologies AG, Nordic Semiconductor, NXP Semiconductors, and Qualcomm Technologies, Inc., have come together to jointly invest in a company aimed at advancing the adoption of RISC-V globally by enabling next-generation hardware development.

Formed in Germany, this company will aim to accelerate the commercialization of future products based on the open-source RISC-V architecture. The company will be a single source to enable compatible RISC-V based products, provide reference architectures, and help establish solutions widely used in the industry. Initial application focus will be automotive, but with an eventual expansion to include mobile and IoT.

Infineon Welcomes Introduction of a Voluntary U.S. IoT Security Label

Today, U.S. Deputy National Security Advisor Anne Neuberger, Chairwoman of the Federal Communications Commission (FCC) Jessica Rosenworcel, and Laurie Locascio, Director of the National Institute of Standards and Technology (NIST) unveiled the U.S. national IoT security label at the White House.

Infineon Technologies AG supports this action to address the growing need for IoT security. The new label supports the IoT security requirements under NISTIR 8425, which resulted from an Executive Order to improve the nation's cybersecurity. This label will recognize products that meet these requirements by permitting them to display a U.S. government label and be listed in a registry indicating that these products meet U.S. cybersecurity standards.

EU Approves €8 Billion Fund to Aid Semiconductor Research

According to the report coming from Bloomberg, European Union has approved as much as 8.1 billion Euros (about 8.6 billion USD) for research of advanced semiconductors. Accompanied by the 13.7 billion Euros in private funds, the total investment for boosting domestic semiconductor manufacturing in the EU is almost 22 billion Euros. As part of the European CHIPS Act, the project aims to develop Europe as the world's semiconductor powerhouse, with as much as 20% of all semiconductors produced in the EU by 2030. This ambitious goal is backed by state subsidies, as well as investors creating private pools of funds to aid companies in creating semiconductor manufacturing facilities on European soil.

This Important Project of Common European Interest (IPCEI) on Microelectronics and Communication Technologies is an essential step for Europe's semiconductor independence. Internal Market Commissioner Thierry Breton noted, "In a geopolitical context of de-risking, Europe is taking its destiny into its own hands. By mastering the most advanced semiconductors, the EU will become an industrial powerhouse in markets of the future." Companies like Intel, Infineon, STMicroelectronics, GlobalFoundries, and Wolfspeed announced European investments, with TSMC considering a production facility in Germany. German Economy Minister Robert Habeck has noted that Germany has 31 projects in 11 regions, adding, "We can thus increase resilience across Europe in this important field and secure value creation and jobs."

TSMC and Partners to Invest $11 Billion into German-based Factory

TSMC, a Taiwanese semiconductor giant, is reportedly talking to its partners to develop an $11 billion (€10 billion) factory in Germany with the help of a few European partners. Currently assessing the plant location for Saxony in Germany, the fab wouldn't only be exclusively made by TSMC but will bring in NXP, Bosch, and Infineon that, will create a budget of around 7 billion Euros, including state subsidies, while the total budget is leaning closer to 10 billion Euros in total. However, it is essential to note that TSMC is still assessing the possibility of a Europe-based plant altogether.

Asking for as much as 40% of the total investment to be European-backed subsidies, TSMC wants to create a European facility that will be focused on a growing sector--automotive. If approved in August, the TSMC plant will become the company's first European facility and will first focus on manufacturing 28 nm chips. As one of the first significant EU Chips Act €43 billion investment, it will heavily boost European semiconductor manufacturing.

2026 All-Time High in Store for Global 300 mm Semiconductor Fab Capacity After 2023 Slowdown

Semiconductor manufacturers worldwide are forecast to increase 300 mm fab capacity to an all-time high of 9.6 million wafers per month (wpm) in 2026, SEMI announced today in its 300 mm Fab Outlook to 2026 report. After strong growth in 2021 and 2022, the 300 mm capacity expansion is expected to slow this year due to soft demand for memory and logic devices.

"While the pace of the global 300 mm fab capacity expansion is moderating, the industry remains squarely focused on growing capacity to meet robust secular demand for semiconductors," said Ajit Manocha, SEMI President and CEO. "The foundry, memory and power sectors will be major drivers of the new record capacity increase expected in 2026."

New NFC Tag-Side Controller From Infineon Integrates Energy-Harvesting to Enable Battery-Free IoT Solutions

NFC-based sensing controllers with energy-harvesting capabilities are critical for the development of passive smart devices that can operate with high accuracy, efficiency, and design convenience in a wide range of IoT applications. With the NGC1081, Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) expands its product portfolio of NFC tag-side controllers. The new IC is a single-chip solution that enables the IoT industry to develop low-cost, miniaturized, smart edge computing/sensing devices, maximizing the benefits for both end-users and manufacturers. Such devices can be controlled and powered by mobile phones, with potential applications ranging from medical patches and disposable point-of-case testers to data loggers, smart thermostats, and sensor inlays.

The tag-side controller supports a dual power supply function, allowing it to operate in a passive mode (battery-free) based on energy harvesting, or in a battery-powered mode, operating as a self-contained sensing node via a 3 to 3.3 V external power supply. In passive mode, the entire sensing system, including the IC and its connected sensors, can draw power via energy harvesting from the NFC field of a mobile phone. Together with its naturally galvanically isolated sensing interface, these features open up countless possibilities for creating many innovative sensing use cases that require no batteries and minimal maintenance. This is particularly useful for applications where the power supply needs to be galvanically isolated to meet the safety requirement.

The Raspberry Pi Foundation Launches the $6 Raspberry Pi Pico W

New product alert! In January last year, we launched the $4 Raspberry Pi Pico, our first product built on silicon designed here at Raspberry Pi. At its heart is the RP2040 microcontroller, built on TSMC's 40 nm low-power process, and incorporating two 133 MHz Arm Cortex-M0+ cores, 264kB of on-chip SRAM, and our unique programmable I/O subsystem. Since launch, we've sold nearly two million Pico boards, and RP2040 has found its way into a huge number of third-party products. We always believed that RP2040 was a great fit for commercial and industrial applications, but the global semiconductor shortage has vastly accelerated adoption. With millions of units on hand today, and pipeline in place for tens of millions more, design engineers who have been let down by their current suppliers have a perfect excuse to experiment.

Fast cores, large memory, and flexible interfacing make RP2040 a natural building block for Internet of Things (IoT) applications. But Pico itself has one obvious missing feature for IoT: a method for connecting to the network. Now, this is about to change. Today, we're launching three new members of the Pico family. Raspberry Pi Pico W is priced at $6, and brings 802.11n wireless networking to the Pico platform, while retaining complete pin compatibility with its older sibling. Pico H ($5) and Pico WH ($7) add pre-populated headers, and our new 3-pin debug connector, to Pico and Pico W respectively. Pico H and Pico W are available today; Pico WH will follow in August.

PMIC Demand Stable in 2H22 Considering Automotive Demand, Says TrendForce

According to TrendForce, market conditions in 1H22 were chaotic and there was disparate demand for chips of varying functionality. Given the global development of electronic devices and power systems, overall demand for power management ICs (PMIC) is still relatively good. PMICs are used in consumer electronics, communications, computing, industrial control, automotive and other fields. In 2H22, supply and demand gradually diverged and demand for automotive Switching Regulators, Multi Channel PMICs was strongest.

According to TrendForce, there are various specifications and types of PMICs, including Linear Regulators, etc. Even usage scenario dependent products such as Battery Charging & Management, Voltage References, and USB Power Delivery ICs all fall into this category.

2021 Annual Global Power Management IC Prices Jump 10%, Supply Remains Tight for 1H22, Says TrendForce

Due to material shortages caused by insufficient semiconductor supply, to date, power management IC (PMIC) prices remain on an upward trend, according to TrendForce's latest investigations. Average selling price (ASP) for 1H22 is forecast to increase by nearly 10%, reaching a record six year high.

In terms of the global supply chain, in addition to the production capacity of major IDM manufacturers including TI, Infineon, ADI, STMicroelectronics, NXP, ON Semiconductor, Renesas, Microchip, ROHM (Maxim has been acquired by ADI and Dialog by Renesas), IC design houses such as Qualcomm and MediaTek (MTK) have obtained a certain level of production capacity from foundries. Of these, TI is in a leadership position and the aforementioned companies possess a combined market share of over 80%.

Infineon's New 300 mm Fab Opens Three Months Ahead of Schedule

Finally some good news from the semiconductor industry, Infineon has announced the opening of its new €1.6 billion, 300 mm, or 12-inch wafer semiconductor factory. That said, we're somewhat confused with the press release, as it states that "the chips are manufactured on 300-millimeter thin wafers, which at 40 micrometers are thinner than a human hair" and that Infineon is a "global pioneer in 300-millimeter thin-wafer technology". This is why you need someone to proofread press releases before distributing them.

Anyhow, back on topic. The fab has nearly 60,000 square meters of gross floor space and production will be ramped up over the next four to five years, so it's not going to alleviate the current chip shortage any time soon. The fab is located in Villach, Austria and has taken three years to build. The first wafers produced in the fab are said to be leaving it this week and although Infineon didn't specify what chips they'll end up as, the fab is set up to initially cater for the automotive industry, data centers and the renewable energy industry.

Manufacturing: Samsung Semiconductor Fabs in Texas Shut Down Following State-wide Power Shortages

News just keep flowing that are bound to have impact on pricing for components users of this website know and love. The Austin-American Statesman reports that Samsung has been ordered to shutter its Texas factories in wake of recent power shortages that have impacted the state. The order, which came from Austin Energy, doesn't just affect Samsung: all industrial and semiconductor manufacturers in the state were ordered to idle or shut down their facilities, meaning that NXP Semiconductors and Infineon Semiconductors have also been affected. According to Austin Energy, all companies have complied with the order. A date for the lifting of these restrictions still hasn't been given.

As we know, semiconductor manufacturing is a drawn-out process, with some particular wafers taking several months in their journey from initial fabrication until they reach completion. This meas that it's a particularly sensitive business in regards to power outages or general service interruptions. The entire semiconductor manufacturing lines - and products therein, in various stages of production - can be rendered unusable due to these events, which will have a sizable impact in the final manufacturing output of a given factory. It remains to be seen the scale of this production impact, but a few percentage points difference in the overall global semiconductor manufacturing could have dire implications for availability and pricing, considering the already insufficient operational capacity in regards to demand. Considering the impact adverse temperatures are having on Texas residents, here's hoping for the quick resolution of these problems, which affect much more than just semiconductor manufacturing capabilities.
Return to Keyword Browsing
Dec 21st, 2024 20:14 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts