News Posts matching #Crestmont

Return to Keyword Browsing

Dynabook Introduces 989-gram Portégé Laptop With Meteor Lake CPUs

Dynabook has introduced the Protégé X30W powered by up to an Intel Core Ultra 7 165H processor. At first glance, that hardly seems impressive, but a closer look at the device reveals that the laptop weighs a feather-light 989 grams, or roughly 2.2 lbs. The device is also a convertible, which means that the hinge allows for 360° rotation, effectively converting the laptop into a tablet.

Apart from its lightweight design, there is little else about the laptop that is worth noting. The highest-end variant sports a Core Ultra 7 165H, which is a plenty-powerful chip, featuring 6 performance cores and 8 efficiency cores for a total of 14 cores and 22 threads, since the Crestmont cores do not support Hyper-Threading. An 8-core Arc iGPU handles the graphics, and delivers decent performance that nearly matches the RTX 2050 Mobile in certain cases. The system features up to 32 GB of DDR5-5200 memory, and up to a 2 TB PCIe Gen 4 SSD.

CPU-Z Screenshot of Alleged Intel Core Ultra 9 285K "Arrow Lake" ES Surfaces, Confirms Intel 4 Process

A CPU-Z screenshot of an alleged Intel Core Ultra 9 285K "Arrow Lake-S" desktop processor engineering sample is doing rounds on social media, thanks to wxnod. CPU-Z identifies the chip with an Intel Core Ultra case badge with the deep shade of blue associated with the Core Ultra 9 brand extension, which hints at this being the top Core Ultra 9 285K processor model, we know it's the "K" or "KF" SKU looking at its processor base power reading of 125 W. The chip is built in the upcoming Intel Socket LGA1851. CPU-Z displays the process node as 7 nm, which corresponds with the Intel 4 foundry node.

Intel is using the same Intel 4 foundry node for "Arrow Lake-S" as the compute tile of its "Meteor Lake" processor. Intel 4 offers power efficiency and performance comparable to 4 nm nodes from TSMC, although it is physically a 7 nm node. Likewise, the Intel 3 node is physically 5 nm. If you recall, the main logic tile of "Lunar Lake" is being built on the TSMC N3P (3 nm) node. This means that Intel is really gunning for performance/Watt with "Lunar Lake," to get as close to the Apple M3 Pro as possible.

Intel's "Skymont" E-core Posts a Double-digit IPC Gain Over "Crestmont": Leaked Presentation

Amid all the attention the next-generation "Lion Cove" P-cores powering the upcoming "Lunar Lake" and "Arrow Lake" microarchitectures get as they compete with AMD's "Zen 5," it's easy to lose sight of the next-generation "Skymont" E-cores that will feature in both the upcoming Intel microarchitectures, and as standalone cores in the "Twin Lake" low-power processor. Pictures from an Intel presentation, possibly to PC OEMs, got leaked to the web. These are just thumbnails, we can't see the whole slides, but the person who took the pictures captioned them in a now-deleted social media post on the Chinese microblogging platform Weibo.

And now, the big reveal—the "Skymont" E-core is said to offer a double-digit IPC gain over the "Crestmont" E-core powering the current "Meteor Lake" processor, which in itself posted a roughly 4% IPC gain over the "Gracemont" E-cores found in the "Raptor Lake" and "Alder Lake" microarchitectures. Such an IPC gain over "Gracemont" should make the "Skymont" E-core match the IPC of the "Sunny Cove" or "Willow Cove" P-cores powering the "Ice Lake" and "Tiger Lake" microarchitectures, respectively, which were both within the 90th percentile of the AMD "Zen 3" core in IPC.

Intel Readies N250 Series "Twin Lake" Low-power Processors, Succeeds "Alder Lake-N"

Intel is readying the new N250 "Twin Lake" line of low-power processors that succeed the N200 series "Alder Lake-N" series. These are chips built on the latest process node Intel is using for its Core and Xeon processors, but only features E-cores (efficiency codes) from the latest microarchitecture. Chips from the N200 series are popular with low-cost notebooks, thin-clients, embedded systems, kiosks and point-of-sale terminals, NAS, and consumer electronics. "Twin Lake" is codename for the new processor series, these are likely monolithic processor dies that use a client ringbus layout, and one E-core cluster that makes up the compute muscle.

While "Alder Lake-N" is powered by "Gracemont" E-cores, the new "Twin Lake" chips are expected to feature "Skymont" E-core clusters. Intel is expected to debut "Skymont" E-cores with its upcoming Core Ultra 200V series "Lunar Lake-MX" mobile processors. "Skymont" is technically two generations ahead of "Gracemont," as Intel introduced the "Crestmont" cores with its current Core Ultra 100 "Meteor Lake" processor family. Not a lot is known about "Skymont" at this point, except that it's expected to feature IPC increases, and perform close to Intel's P-cores from 3-4 generations ago, such as the "Willow Cove" cores powering the 11th Gen Core "Tiger Lake" processors, looking at past trends of the "Gracemont" core performing similar to a "Skylake" core with HTT disabled.

Intel Core Ultra "Meteor Lake" Processor Lineup Overview

On December 14 Intel launched its first generation Core Ultra "Meteor Lake" line of mobile processors, and here is a a brief overview of the various processor models on offer at launch, thanks to a compilation by ComputerBase.de. "Meteor Lake" is Intel's first completely disaggregated processor, in which its numerous components are broken up into chiplets fabricated on different foundry nodes that strike the right performance/Watt suitable to the component, all held together by Intel's Foveros packaging technology (an evolution in multi-chip modules with a design focus on reducing inter-chiplet latencies to levels comparable to components on a monolithic chip). "Meteor Lake" also introduces a 3-tiered heterogeneous CPU architecture, with the introduction of the low-power island CPU cores.

Intel's mobile processor lineup is broadly categorized into the U-segment, targeting thin-and-light and ultraportable devices; and the H-segment, targeting notebooks of conventional thickness. At launch, the Core Ultra H-segment, and U-segment processors will coexist with P-segment processor models from the 13th Gen Core "Raptor Lake" series; as well as the upcoming 14th Gen Core "Raptor Lake Refresh" HX-segment. The P-segment is positioned between the U- and H-segments, targeting a class of devices that either what to be thin-and-light mainstream notebooks, or higher performance ultraportables. The HX-segment caters to high performance gaming notebooks and mobile workstations.

Intel 288 E-core Xeon "Sierra Forest" Out to Eat AMD EPYC Bergamo's Lunch

Intel at the 2023 InnovatiON event unveiled a 288-core extreme core-count variant of the Xeon "Sierra Forest" processor for high-density servers for scale-out, cloud-native environments. It succeeds the current 144-core model. "Sierra Forest" is a server processor based entirely on efficiency cores, or E-cores, based on the "Sierra Glen" core microarchitecture, a server-grade derivative of "Crestmont," Intel's second-generation E-core that's making a client debut with "Meteor Lake."

Xeon "Sierra Forest" is a chiplet-based processor, much like "Meteor Lake" and the upcoming "Emerald Rapids" server processor. It features a total of five tiles—two Compute tiles, two I/O tiles, and a base tile (interposer). Each of the two Compute tiles is built on the Intel 3 foundry node, a more advanced node than Intel 4, featuring higher-density libraries, and an undisclosed performance/Watt increase. Each tile has 36 "Sierra Glen" E-core clusters, 108 MB of shared L3 cache, 6-channel (12 sub-channel) DDR5 memory controllers, and Foveros tile-to-tile interfaces.

Intel to Go Ahead with "Meteor Lake" 6P+16E Processor on the Desktop Platform?

Late last year, it was reported that Intel is skipping its upcoming "Meteor Lake" microarchitecture for the desktop platform, giving it a mobile-platform debut in late-2023, with "Arrow Lake" following on in 2024, which would address both platforms. In the interim, Intel was expected to release a "Raptor Lake Refresh" architecture for desktop in 2023. It turns out now, that both the "Raptor Lake Refresh" and "Meteor Lake" architectures are coming to desktop—we just don't know when.

Apparently, Intel will brazen it out against AMD with a maximum CPU core-count of just 6 performance cores and 16 efficiency cores possible for "Meteor Lake." It's just that both the P-cores and a E-cores get an IPC uplift with "Meteor Lake." The processor features up to six "Redwood Cove" P-cores with an IPC uplift over the current "Raptor Cove" cores; and introduce the new "Crestmont" E-cores. A lot will depend on the IPC uplift of the latter. Leaf_hobby, a reliable source with Intel leaks on social media, has some interesting details on the I/O capabilities of "Meteor Lake" on the desktop platform.

Intel Meteor Lake to Feature 50% Increase in Efficiency, 2X Faster iGPU

Intel's upcoming Meteor Lake processor family is supposedly looking good with the new performance/efficiency targets. According to the @OneRaichu Twitter account, we have a potential performance estimate for the upcoming SKUs. As the latest information notes, Intel's 14th-generation Meteor Lake will feature around a 50% increase in efficiency compared to the 13th-generation Raptor Lake designs. This means that the processor can use half the power at the same performance target at Raptor Lake, increasing efficiency. Of course, the design also offers some performance improvements besides efficiency that are significant and are yet to be shown. The new Redwood Cove P-cores will be combined with the new Crestmont E-cores for maximum performance inside U/P/H configurations with 15-45 Watt power envelopes.

For integrated graphics, the source notes that Meteor Lake offers twice the performance of iGPU found on Raptor Lake designs. Supposedly, Meteor Lake will feature 128 EUs running 2.0+GHz compared to 96 EUs found inside Raptor Lake. The iGPU architecture will switch from Intel Iris to Xe-LPG 'Xe-MTL' family on the 14th gen models, confirming a giant leap in performance that iGPU is supposed to experience. Using the tile-based design, Intel combines the Intel 4 process for the CPU tile and the TSMC 5 nm process for the GPU tile. Intel handles final packaging for additional tuning, and you can see the separation below.

Intel Xeon "Sapphire Rapids" to be Quickly Joined by "Emerald Rapids," "Granite Rapids," and "Sierra Forest" in the Next Two Years

Intel's server processor lineup led by the 4th Gen Xeon Scalable "Sapphire Rapids" processors face stiff competition from AMD 4th Gen EPYC "Genoa" processors that offer significantly higher multi-threaded performance per Watt on account of a higher CPU core-count. The gap is only set to widen, as AMD prepares to launch the "Bergamo" processor for cloud data-centers, with core-counts of up to 128-core/256-thread per socket. A technologically-embattled Intel is preparing quick counters as many as three new server microarchitecture launches over the next 23 months, according to Intel, in its Q4-2022 Financial Results presentation.

The 4th Gen Xeon Scalable "Sapphire Rapids," with a core-count of up to 60-core/120-thread, and various application-specific accelerators, witnessed a quiet launch earlier this month, and is shipping to Intel customers. The company says that it will be joined by the Xeon Scalable "Emerald Rapids" architecture in the second half of 2023; followed by "Granite Rapids" and "Sierra Forest" in 2024. Built on the same LGA4677 package as "Sapphire Rapids," the new "Emerald Rapids" MCM packs up to 64 "Raptor Cove" CPU cores, which support higher clock-speeds, higher memory speeds, and introduce the new Intel Trust Domain Extensions (TDX) instruction-set. The processor retains the 8-channel DDR5 memory interface, but with higher native memory speeds. The chip's main serial interface is a PCI-Express Gen 5 root-complex with 80 lanes. The processor will be built on the last foundry-level refinement of the Intel 7 node (10 nm Enhanced SuperFin); many of these refinements were introduced with the company's 13th Gen Core "Raptor Lake" client processors.

Intel's Next-Gen Desktop Platform Intros Socket LGA1851, "Meteor Lake-S" to Feature 6P+16E Core Counts

Keeping up with the cadence of two generations of desktop processors per socket, Intel will turn the page of the current LGA1700, with the introduction of the new Socket LGA1851. The processor package will likely have the same dimensions as LGA1700, and the two sockets may share cooler compatibility. The first processor microarchitecture to debut on LGA1851 will be the 14th Gen Core "Meteor Lake-S." These chips will feature a generationally lower CPU core-count compared to "Raptor Lake," but significantly bump the IPC on both the P-cores and E-cores.

"Raptor Lake" is Intel's final monolithic silicon client processor before the company pivots to chiplets built on various foundry nodes, as part of its IDM 2.0 strategy. The client-desktop version of "Meteor Lake," dubbed "Meteor Lake-S," will have a maximum CPU core configuration of 6P+16E (that's 6 performance cores with 16 efficiency cores). The chip has 6 "Redwood Cove" P-cores, and 16 "Crestmont" E-cores. Both of these are expected to receive IPC uplifts, such that the processor will end up faster (and hopefully more efficient) than the top "Raptor Lake-S" part. Particularly, it should be able to overcome the deficit of 2 P-cores.

Intel "Meteor Lake" to Debut Xe-LPG iGPU and Crestmont E-cores

Intel's next-generation Core "Meteor Lake" processors will debut the new Xe-LPG graphics architecture for its iGPU. A successor to the Xe-LP architecture powering iGPUs since 11th Gen Core "Tiger Lake," the Xe-LPG graphics architecture is tailored for small-scale GPU designs such as iGPUs. It sheds much of the bulk that the Xe-HPG has, which is optimized for discrete GPU designs. A leaked block diagram of "Meteor Lake" describes Xe-LPG as featuring a new "extended gaming mode," new Adaptix power sharing, which is probably a power-management optimization that prioritizes power share to the iGPU; and even more media encode acceleration capabilities.

The Core "Meteor Lake" compute tile will also feature the latest Gaussian Network Accelerator, GNA 3.5, which speeds up AI deep-learning neural net building and training. The chip features a purpose-build VPU (visual processing unit), similar to the ones in mobile SoCs, which improves the device's ability to recognize faces, or even augmented-reality applications. Lastly, with "Meteor Lake," Intel is debuting the new "Crestmont" E-core clusters that introduce an IPC improvement over the "Gracemont" E-cores powering "Alder Lake" and "Raptor Lake."

Intel "Meteor Lake" 2P+8E Silicon Annotated

Le Comptoir du Hardware scored a die-shot of a 2P+8E core variant of the "Meteor Lake" compute tile, and Locuza annotated it. "Meteor Lake" will be Intel's first processor to implement the company's IDM 2.0 strategy to the fullest. The processor is a multi-chip module of various tiles (chiplets), each with a certain function, sitting on die made on a silicon fabrication node most suitable to that function. Under this strategy, for example, if Intel's chip-designers calculate that the iGPU will be the most power-hungry component on the processor, followed by the CPU cores, the graphics tile will be built on a more advanced process than the compute tile. Intel's "Meteor Lake" and "Arrow Lake" processors will implement chiplets built on the Intel 4, TSMC N3, and Intel 20A fabrication nodes, each with unique power and transistor-density characteristics. Learn more about the "Meteor Lake" MCM in our older article.

The 2P+8E (2 performance cores + 8 efficiency cores) compute tile is one among many variants of compute tiles Intel will develop for the various SKUs making up the next-generation Core mobile processor series. The die is annotated with the two large "Redwood Cove" P-cores and their cache slices taking up about 35% of the die area; and the two "Crestmount" E-core clusters (each with 4 E-cores), and their cache slices, taking up the rest. The two P-cores and two E-core clusters are interconnected by a Ring Bus, and share an L3 cache. The size of each L3 cache slice is either 2.5 MB or 3 MB. At 2.5 MB, the total L3 cache will be 10 MB, and at 3 MB, it will be 12 MB. As with all past generations, the L3 cache is fully accessible by all CPU cores in the compute tile.

Intel Makes Jilted Reference to Apple in its Internal "Arrow Lake" Slide

Intel is designing a "Halo" SKU of a future generation of mobile processors with a goal to match Apple's in-house silicon of the time. Slated for tape-out some time in 2023, with mass-production expected in 2024, the 15th Generation Core "Arrow Lake-P Halo" processor is being designed specifically to compete with Apple's "premium 14-inch laptop" (presumably the MacBook Pro) that the company could have around 2024, based on an in-house Apple silicon. This is to essentially tell its notebook partners that they will have an SoC capable of making their devices in the class truly competitive. Apple relies on a highly scaled out Arm-based SoC based on in-house IP blocks, with a software that's closely optimized for it. Intel's effort appears to chase down its performance and efficiency.

The Core "Arrow Lake" microarchitecture succeeds the 14th Gen "Meteor Lake." It is a multi-chip module (MCM) of three distinct dies built on different fabrication nodes, in line with the company's IDM 2.0 strategy. These nodes are Intel 4 (comparable to TSMC N7 or N6), Intel 20A (comparable to TSMC N5), and an "external" 3 nm-class node that's just the TSMC N3. The compute tile, or the die which houses the CPU cores, combines a hybrid CPU setup of 6 P-cores, and 8 E-cores. The performance cores are likely successors of the "Redwood Cove" P-cores powering the "Meteor Lake" compute tiles. Intel appears to be using one kind of E-cores across two generations (eg: Gracemont across Alder Lake and Raptor Lake). If this is any indication, Arrow Lake could continue to use "Crestmont" E-cores. Things get interesting with the Graphics tile.

Intel "Meteor Lake" and "Arrow Lake" Use GPU Chiplets

Intel's upcoming "Meteor Lake" and "Arrow Lake" client mobile processors introduce an interesting twist to the chiplet concept. Earlier represented in vague-looking IP blocks, new artistic impressions of the chip put out by Intel shed light on a 3-die approach not unlike the Ryzen "Vermeer" MCM that has up to two CPU core dies (CCDs) talking to a cIOD (client IO die), which handles all the SoC connectivity; Intel's design has one major difference, and that's integrated graphics. Apparently, Intel's MCM uses a GPU die sitting next to the CPU core die, and the I/O (SoC) die. Intel likes to call its chiplets "tiles," and so we'll go with that.

The Graphics tile, CPU tile, and the SoC or I/O tile, are built on three different silicon fabrication process nodes based on the degree of need for the newer process node. The nodes used are Intel 4 (optically 7 nm EUV, but with characteristics of a 5 nm-class node); Intel 20A (characteristics of 2 nm), and external TSMC N3 (3 nm) node. At this point we don't know which tile gets what. From the looks of it, the CPU tile has a hybrid CPU core architecture made up of "Redwood Cove" P-cores, and "Crestmont" E-core clusters.

Intel "Meteor Lake" Chips Already Being Built at the Arizona Fab

With its 12th Gen Core "Alder Lake-P" mobile processors still on the horizon, Intel is already building test batches of the 14th Gen "Meteor Lake" mobile processors, at its Fab 42 facility in Chandler, Arizona. "Meteor Lake" is a multi-chip module that leverages Intel's Foveros packaging technology to combine "tiles" (purpose built dies) based on different silicon fabrication processes depending on their function and transistor-density/power requirements. It combines four distinct tiles across a single package—the compute tile, with the CPU cores; the graphics tile with the iGPU: the SoC I/O tile, which handles the processor's platform I/O; and a fourth tile, which is currently unknown. This could be a memory stack with similar functions as the HBM stacks on "Sapphire Rapids," or something entirely different.

The compute tile contains the processor's various CPU core types. The P cores are "Redwood Cove," which are two generations ahead of the current "Golden Cove." If Intel's 12-20% generational IPC uplift cadence holds, we're looking at cores with up to 30% higher IPC than "Golden Cove" (50-60% higher than "Skylake."). "Meteor Lake" also debuts Intel's next-generation E-core, codenamed "Crestmont." The compute tile is rumored to be fabricated on the Intel 4 node (optically a 7 nm-class node, but with characteristics similar to TSMC N5).
Return to Keyword Browsing
Dec 22nd, 2024 02:00 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts