News Posts matching #Fab

Return to Keyword Browsing

Report: Only 10% of TSMC's Capacity will Come from Non-Taiwan Fabs

A recent report from Taiwan TV News has revealed that TSMC's overseas expansion plans will only contribute around 10% of the company's total silicon production capacity. TSMC's overseas expansion strategy has been a topic of significant interest in the tech industry as the company seeks to diversify its manufacturing capabilities beyond its home base in Taiwan. The company has announced plans to build new fabrication plants in the United States, Japan, and potentially other regions in an effort to mitigate supply chain risks and better serve its global customer base. However, according to the report, these overseas facilities will only account for a small fraction of 10% of TSMC's overall production capacity.

The majority of the company's manufacturing will continue to be centered in Taiwan, where it maintains its most advanced and high-volume fabs. There are also significant challenges and investments required to establish new semiconductor manufacturing facilities overseas. Building a state-of-the-art fab can cost billions of dollars and take several years to complete, making it a complex and capital-intensive undertaking. Despite the relatively small contribution of its overseas facilities, TSMC's global expansion is still seen as a crucial step in diversifying its supply chain and mitigating geopolitical risks. The company's ability to maintain its technological leadership and meet the growing demand for advanced chips will be crucial in the years to come.

Samsung Delays Texas Chip Fab to Consider 2nm Process Upgrade

Samsung Electronics is delaying construction at its planned new chip factory in Taylor, Texas. The company is considering upgrading the factory to produce more advanced 2 nm chips instead of the originally planned 4 nm chips. Samsung will make a final decision on this in Q3 2024. In April, the US government provided $6.4 billion to support Samsung's $40 billion investment in Texas chip facilities, including the Taylor factory. However, reports now suggest Samsung may skip 4 nm production at Taylor altogether.

The Taylor factory was expected to open by 2026, but equipment orders have been delayed while Samsung re-evaluates the plans. This upgrade consideration comes after Samsung recently appointed a new CEO for its semiconductor business (Device Solutions Division) to focus on new growth opportunities. While Samsung's memory chip profits surged in 2024, its previous 3 nm chip was not very successful. By going straight to 2 nm in Taylor, Samsung likely aims to leapfrog competitors in advanced chip manufacturing (TSMC, and Intel plan to produce 2 nm-class chips in the US by the end of this decade).

Taiwanese Chipmakers Expand Overseas to Capitalize on Geopolitical Shifts and De-Sinicization Benefits

On June 5th, Vanguard and NXP announced plans to jointly establish VisionPower Semiconductor Manufacturing Company (VSMC) in Singapore to build a 12-inch wafer plant. TrendForce posits that this move reflects the trend of global supply chains shifting "Out of China, Out of Taiwan"(OOC/OOT), with Taiwanese companies accelerating their overseas expansion to improve regional capacity flexibility and competitiveness.

TrendForce noted that the semiconductor supply chain has been diversifying over the past two years to mitigate geopolitical and pandemic-related risks, forming two major segments: China's domestic supply chain and a non-China supply chain. Recent US tariff increases have accelerated this shift, leading to increased orders from American customers.

Intel and Apollo Agree to Joint Venture Related to Intel's Fab 34 in Ireland

Intel Corporation (Nasdaq: INTC) and Apollo (NYSE: APO) today announced a definitive agreement under which Apollo-managed funds and affiliates will lead an investment of $11 billion to acquire from Intel a 49% equity interest in a joint venture entity related to Intel's Fab 34. The transaction represents Intel's second Semiconductor Co-Investment Program (SCIP) arrangement. SCIP is an element of Intel's Smart Capital strategy, a funding approach designed to create financial flexibility to accelerate the company's strategy, including investing in its global manufacturing operations, while maintaining a strong balance sheet.

Located in Leixlip, Ireland, Fab 34 is Intel's leading-edge high-volume manufacturing (HVM) facility designed for wafers using the Intel 4 and Intel 3 process technologies. To date, Intel has invested $18.4 billion in Fab 34. This transaction allows Intel to unlock and redeploy to other parts of its business a portion of this investment while continuing the build-out of Fab 34. As part of its transformation strategy, Intel has committed billions of dollars of investments to regaining process leadership and building out leading-edge wafer fabrication and advanced packaging capacity globally.

Intel Postpones Magdeburg Fab Construction to 2025 Due to Soil Concerns

According to the report from Volksstimme.de, Intel has delayed its Magdeburg fab construction until 2025 due to difficulties in acquiring suitable land. The company had initially planned to begin construction in 2024, but the process has been slowed significantly due to the availability of suitable land. The Magdeburg plant is a significant investment for Intel, with the company planning to invest around €30 billion in the facility. The plant is expected to create thousands of jobs and play a crucial role in the company's European expansion plans. However, the delay in construction is likely to impact these plans and may result in a longer timeline for the plant's completion.

The delay is attributed to the difficulty in finding suitable land for the plant. Intel's original plan of producing a factory on the land concluded that there was humus-rich black soil up to 40 cm in the ground, which would get removed for usage by agricultural fields in Germany. However, now the top layer of black soil, which needs to be excavated, is measured up to 90 cm in depth, which doesn't allow fab construction to start and requires the removal of the soil in order to satisfy the safety regulations. This useful soil has to be extracted first before being "contaminated" with concrete and other types of foundation soils like gravel. The state of Saxony-Anhalt postponed the construction until the required soil was removed and regulations were met. This will supposedly happen by the end of 2024, and construction will start in 2025.

Toshiba Completes New 300-Millimeter Wafer Fabrication Facility for Power Semiconductors

Toshiba Electronic Devices & Storage Corporation ("Toshiba") today held a ceremony to mark the completion of a new 300-millimeter wafer fabrication facility for power semiconductors and an office building at Kaga Toshiba Electronics Corporation in Ishikawa Prefecture, Japan, one of Toshiba's key group companies. The completion of construction is a major milestone for Phase 1 of Toshiba's multi-year investment program. Toshiba will now proceed with equipment installation, toward starting mass production in the second half of fiscal year 2024. Once Phase 1 reaches full-scale operation, Toshiba's production capacity for power semiconductors, mainly MOSFETs and IGBTs, will be 2.5 times that of fiscal 2021, when the investment plan was made. Decisions on the construction and start of operation of Phase 2 will reflect market trends.

The new manufacturing building follows and will make a major contribution to Toshiba's Business Continuity Plan (BCP): it has a seismic isolation structure that absorbs earthquake shock and redundant power sources. Energy from renewable source and solar panels on the roof of the building (onsite PPA model) will allow the facility to meet 100% of its power requirement with renewable energy.

Magnitude 7.4 Earthquake in Taiwan Halts Production at TSMC and Other Foundries

At 07:58 local time, Taiwan was rocked by a magnitude 7.4 earthquake on the east coast which was felt nationwide and as far as to the southeastern parts of China and southern Japan. It caused some major damage in the east coast city of Hualien where the epicentre of the quake was located, as well as surrounding areas. The earthquake reportedly left nine people dead and over 900 people injured islandwide. TSMC, UMC, PSMC and Innolux all halted some of their production lines in the Hsinchu Science Park on the west coast of the island, although this is said to have been as a preventive step, rather than caused by actual damage from the earthquake.

All the above-mentioned companies also evacuated their staff from their factories due to the intensity of the quake, as it reached a magnitude of around four or five almost island wide. The semiconductor manufacturers are all inspecting their fabs now to make sure none of the equipment was damaged by the earthquake. Innolux also has a factory in the southern city of Kaohsiung and has reported that it has suspended production in Hsinchu, but that production in Kaohsiung wasn't affected. Local media in Taiwan hasn't made any mention of the likes of Micron or other chip manufacturers, but it's likely that the situation is similar, since all of these companies are located in the same areas on the island. Aftershocks have continued throughout the day and there's a risk for further big earthquakes to follow in the coming days.
Images courtesy of the Taiwan Central Weather Administration (CWA).

Update 15:11 UTC: Updated with an official statement from Micron below.

Report: Intel Seeks $2 Billion in Funding for Ireland Fab 34 Expansion

According to a Bloomberg report, Intel is seeking to raise at least $2 billion in equity funding from investors for expanding its fabrication facility in Leixlip, Ireland, known as Fab 34. The chipmaker has hired an advisor to find potential investors interested in providing capital for the project. Fab 34 is currently Intel's only chip plant in Europe that uses cutting-edge extreme ultraviolet (EUV) lithography. It produces processors on the Intel 4 process node, including compute tiles for Meteor Lake client CPUs and expected future Xeon data center chips. While $2 billion alone cannot finance the construction of an entirely new fab today, it can support meaningful expansion or upgrades of existing capacity. Intel likely aims to grow Fab 34's output and/or transition it to more advanced 3 nm-class technologies like Intel 3, Intel 20A, or Intel 18A.

Expanding production aligns with Intel's needs for its own products and its Intel Foundry Services business, providing contract manufacturing. Intel previously secured a $15 billion investment from Brookfield Infrastructure for its Arizona fabs in exchange for a 49% stake, demonstrating the company's willingness to partner to raise capital for manufacturing projects. The Brookfield deal also set a precedent of using outside financing to supplement Intel's own spending budget. It provided $15 billion in effectively free cash flow Intel can redirect to other priorities like new fabs without increasing debt. Intel's latest fundraising efforts for the Ireland site follow a similar equity investment model that leverages outside capital to support its manufacturing expansion plans. Acquiring High-NA EUV machinery for manufacturing is costly, as these machines can reach up to $380 million alone.

Report: Global Semiconductor Capacity Projected to Reach Record High 30 Million Wafers Per Month in 2024

Global semiconductor capacity is expected to increase 6.4% in 2024 to top the 30 million *wafers per month (wpm) mark for the first time after rising 5.5% to 29.6 wpm in 2023, SEMI announced today in its latest quarterly World Fab Forecast report.

The 2024 growth will be driven by capacity increases in leading-edge logic and foundry, applications including generative AI and high-performance computing (HPC), and the recovery in end-demand for chips. The capacity expansion slowed in 2023 due to softening semiconductor market demand and the resulting inventory correction.

Ansys Collaborates with TSMC and Microsoft to Accelerate Mechanical Stress Simulation for 3D-IC Reliability in the Cloud

Ansys has collaborated with TSMC and Microsoft to validate a joint solution for analyzing mechanical stresses in multi-die 3D-IC systems manufactured with TSMC's 3DFabric advanced packaging technologies. This collaborative solution gives customers added confidence to address novel multiphysics requirements that improve the functional reliability of advanced designs using TSMC's 3DFabric, a comprehensive family of 3D silicon stacking and advanced packaging technologies.

Ansys Mechanical is the industry-leading finite element analysis software used to simulate mechanical stresses caused by thermal gradients in 3D-ICs. The solution flow has been proven to run efficiently on Microsoft Azure, helping to ensure fast turn-around times with today's very large and complex 2.5D/3D-IC systems.

Texas Instruments Breaks Ground on New 300-mm Semiconductor Wafer Fabrication Plant in Utah

Texas Instruments (TI) today broke ground on its new 300-mm semiconductor wafer fabrication plant (or "fab") in Lehi, Utah. Joined by Utah Governor Spencer Cox, state and local elected officials, as well as community leaders, TI President and Chief Executive Officer Haviv Ilan celebrated the first steps toward construction of the new fab, LFAB2, which will connect to the company's existing 300-mm wafer fab in Lehi. Once completed, TI's two Utah fabs will manufacture tens of millions of analog and embedded processing chips every day at full production.

"Today we take an important step in our company's journey to expand our manufacturing footprint in Utah. This new fab is part of our long-term, 300-mm manufacturing roadmap to build the capacity our customers will need for decades to come," said Ilan. "At TI, our passion is to create a better world by making electronics more affordable through semiconductors. We are proud to be a growing member of the Utah community, and to manufacture analog and embedded processing semiconductors that are vital for nearly every type of electronic system today."

Vietnam is Aiming to Become a Semiconductor Manufacturing Nation

According to a news post by Reuters, Vietnam is the latest nation that is trying to become a semiconductor manufacturing nation, albeit its plans are nothing like what China is doing, instead the nation is trying to woo existing semiconductor companies to build fabs in Vietnam. The nation has been building its high-tech industry over a few years now and although it's nowhere near some of its neighbouring nations, Vietnam is likely to become an important player when it comes to assembly in the not too distant future, alongside India. However, fabricating semiconductors is a big leap from assembling smartphones, computers and EVs and requires a highly skilled workforce, something which is already becoming an issue in nations like Taiwan and Singapore.

Reuters reports that Vietnam has approached both GlobalFoundries and Taiwanese Powerchip Semiconductor Manufacturing Corporation, or PSMC for short. PSMC is among the top 10 foundries in the world, despite only having a mere five fabs, all of which are located in Taiwan. PSMC's main focus is the automotive industry and might be the more likely candidate to consider Vietnam of the two. Neither company has made any kind of commitment to invest in Vietnam. However, building a fab in a nation that doesn't have a semiconductor industry brings with it several challenges, least not supply chain related ones. Reuters mentioned a speech by Synopsys VP Robert Li which he held at the Vietnam Semiconductor Summit, where he mentions that building a foundry in Vietnam might cost as much as US$50 billion, which doesn't seem like a very appealing proposal to any company considering opening up a foundry in the nation.

China's Share in Mature Process Capacity Predicted to Hit 29% in 2023, Climbing to 33% by 2027

TrendForce reports that from 2023 to 2027, the global ratio of mature (>28 nm) to advanced (<16 nm) processes is projected to hover around 7:3. Propelled by policies and incentives promoting local production and domestic IC development, China's mature process capacity is anticipated to grow from 29% this year to 33% by 2027. Leading the charge are giants like SMIC, HuaHong Group, and Nexchip, while Taiwan's share is estimated to consolidate from 49% down to 42%.

Expansion predominantly targets specialty processes such as Driver ICs, CIS/ISPs, and Power Discretes, with second and third-tier Taiwanese manufacturers at the forefront
Within the Driver IC sector, the spotlight is on high voltage (HV) specialty processes. As companies aggressively pursue the 40/28 nm HV process, UMC currently dominates, trailed by GlobalFoundries. Yet, SMIC's 28HV and Nexchip's 40HV are gearing up for mass production in 4Q23 and 1H24, respectively—narrowing their technological gap with other foundries. Notably, competitors with similar process capabilities and capacities, such as PSMC, and those without twelve-inch factories like Vanguard and DBHitek, are poised to face challenges head-on in the short term. This trend may also have long-term implications for UMC and GlobalFoundries.

Intel's Arizona Expansion Marks Construction Milestone

Marking a milestone in Intel's ongoing manufacturing expansion in Arizona, the company today announced that the initial portion of the cleanroom is "weather tight" and the "blow down" phase has begun at the company's two new leading-edge chip factories on its Ocotillo campus in Chandler, Arizona. This milestone underscores Intel's dedication to advancing its presence in the state and fostering technological innovation.

"Our commitment to Arizona runs deep, and as we expand our operations, we remain dedicated to addressing the growing demand for semiconductors and helping the United States regain its leadership position in this vital industry. This milestone represents the result of great teamwork, proficient teams and exceptional craftsmanship of the tradespeople, and it's thanks to their hard work that we've made such significant progress on our site while keeping our culture of caring and the safety of all as our top priority." -Dan Doron, Intel vice president and general manager of Fab Construction Enterprise

Zero ASIC Democratizing Chip Making

Zero ASIC, a semiconductor startup, came out of stealth today to announce early access to its one-of-a-kind ChipMaker platform, demonstrating a number of world firsts:
  • 3D chiplet composability enabling billions of new silicon products
  • Fully automated no-code chiplet-based chip design
  • Zero install interactive RTL-based chip emulation
  • Roadmap to 100X reduction in chip development costs
"Custom Application Specific Integrated Circuits (ASICs) offer 10-100X cost and energy advantage over commercial off the shelf (COTS) devices, but the enormous development cost makes ASICs non-viable for most applications," said Andreas Olofsson, CEO and founder of Zero ASIC. "To build the next wave of world changing silicon devices, we need to reduce the barrier to ASICs by orders of magnitude. Our mission at Zero ASIC is to make ordering an ASIC as easy as ordering catalog parts from an electronics distributor."

Micron Initiates Construction on Leading-Edge Memory Manufacturing Fab

Micron Technology, Inc., one of the world's largest semiconductor companies and the only U.S.-based manufacturer of memory, will today celebrate the start of construction on the nation's first new memory manufacturing fab in 20 years. Company executives will join Idaho Governor Brad Little, Boise Mayor Lauren McLean, other community partners and team members to mark the milestone with a ceremonial concrete pour at Micron's Boise headquarters on the 45th anniversary of the company's founding.

Just over a year ago, Micron announced its plans to invest approximately $15 billion through the end of the decade to construct a new fab for leading-edge memory manufacturing, to be co-located with the company's R&D epicenter in its hometown of Boise. Through the lifespan of the project, Micron will directly infuse $15.3 billion into the Idaho economy and directly spend $13.0 billion with Idaho businesses. The project will create over 17,000 new Idaho jobs, including 2,000 Micron direct jobs, furthering the need for a diverse, highly skilled workforce.

Second Half Utilization Rate for 8-inch Production Capacity Expected to Drop to 50-60%; Chilly Demand Prospects Until 1Q24

TrendForce research indicates that in 1H23, the utilization rate of 8-inch production capacity primarily benefited from sporadic inventory restocking orders for Driver ICs in the second quarter. Additionally, wafer foundries initiated pricing strategies to encourage clients into early orders, offering solid backup. However, in 2H23, persistent macroeconomic and inventory challenges led to the evaporation of an anticipated demand surge.

Meanwhile, stockpiles in automotive and industrial control segments grew after meeting initial shortages, tempering demand. Under fierce price competition from PMIC leader Texas Instruments (TI), inventory reductions for Fabless and other IDMs were drastically inhibited. With IDMs ushering in output from their new plants and pulling back outsourced orders, this compounded reductions to wafer foundries. This dynamic saw 8-inch production capacity utilization dipping to 50-60% in the second half of the year. Both Tier 1 and Tier 2/3 8-inch wafer foundries saw a more lackluster capacity utilization performance compared to the first half of the year.

TSMC Announces Breakthrough Set to Redefine the Future of 3D IC

TSMC today announced the new 3Dblox 2.0 open standard and major achievements of its Open Innovation Platform (OIP) 3DFabric Alliance at the TSMC 2023 OIP Ecosystem Forum. The 3Dblox 2.0 features early 3D IC design capability that aims to significantly boost design efficiency, while the 3DFabric Alliance continues to drive memory, substrate, testing, manufacturing, and packaging integration. TSMC continues to push the envelope of 3D IC innovation, making its comprehensive 3D silicon stacking and advanced packaging technologies more accessible to every customer.

"As the industry shifted toward embracing 3D IC and system-level innovation, the need for industry-wide collaboration has become even more essential than it was when we launched OIP 15 years ago," said Dr. L.C. Lu, TSMC fellow and vice president of Design and Technology Platform. "As our sustained collaboration with OIP ecosystem partners continues to flourish, we're enabling customers to harness TSMC's leading process and 3DFabric technologies to reach an entirely new level of performance and power efficiency for the next-generation artificial intelligence (AI), high-performance computing (HPC), and mobile applications."

Synopsys and TSMC Streamline Multi-Die System Complexity with Unified Exploration-to-Signoff Platform and Proven UCIe IP on TSMC N3E Process

Synopsys, Inc. today announced it is extending its collaboration with TSMC to advance multi-die system designs with a comprehensive solution supporting the latest 3Dblox 2.0 standard and TSMC's 3DFabric technologies. The Synopsys Multi-Die System solution includes 3DIC Compiler, a unified exploration-to-signoff platform that delivers the highest levels of design efficiency for capacity and performance. In addition, Synopsys has achieved first-pass silicon success of its Universal Chiplet Interconnect Express (UCIe) IP on TSMC's leading N3E process for seamless die-to-die connectivity.

"TSMC has been working closely with Synopsys to deliver differentiated solutions that address designers' most complex challenges from early architecture to manufacturing," said Dan Kochpatcharin, head of the Design Infrastructure Management Division at TSMC. "Our long history of collaboration with Synopsys benefits our mutual customers with optimized solutions for performance and power efficiency to help them address multi-die system design requirements for high-performance computing, data center, and automotive applications."

Micron Claims it Needs Government Funding to Develop New Fabs

According to Reuters, Micron has followed in Intel's footsteps and asked the US Government to pitch in to help the company build new fabs in Boise, Idaho and Clay, New York. The funds would be part of the CHIPS Act, which means Intel is going to have to fight for its share, since Pat Gelsinger is expecting Intel to get a bigger share than other companies. However, as Micron is also a US company, Intel will have less clout to convince politicians to favour it over the competition for the funds. The CHIPS Act has earmarked US$52.7 billion in subsidiaries for semiconductor production and research in the US.

Last September, Micron announced that it would be investing some US$15 billion in new facilities at its Idaho location by 2032, which the company claimed would create some 17,000 jobs by 2030 in the area. In October, the company went on to state that it would invest up to US$100 billion for the next 20 years in what Micron says will be the largest semiconductor production plant in the world at its Clay, New York location. However, now it looks like at least a sizable chunk of that money will come from the US taxpayers, rather than from Micron's own pocket. Time will tell how much each of the CHIPS Act applications will get, as if enough companies apply, the money might not go quite as far as some of these companies have hoped for.

Micron Delivers Industry's Fastest, Highest-Capacity HBM to Advance Generative AI Innovation

Micron Technology, Inc. today announced it has begun sampling the industry's first 8-high 24 GB HBM3 Gen2 memory with bandwidth greater than 1.2 TB/s and pin speed over 9.2 Gb/s, which is up to a 50% improvement over currently shipping HBM3 solutions. With a 2.5 times performance per watt improvement over previous generations, Micron's HBM3 Gen2 offering sets new records for the critical artificial intelligence (AI) data center metrics of performance, capacity and power efficiency. These Micron improvements reduce training times of large language models like GPT-4 and beyond, deliver efficient infrastructure use for AI inference and provide superior total cost of ownership (TCO).

The foundation of Micron's high-bandwidth memory (HBM) solution is Micron's industry-leading 1β (1-beta) DRAM process node, which allows a 24Gb DRAM die to be assembled into an 8-high cube within an industry-standard package dimension. Moreover, Micron's 12-high stack with 36 GB capacity will begin sampling in the first quarter of calendar 2024. Micron provides 50% more capacity for a given stack height compared to existing competitive solutions. Micron's HBM3 Gen2 performance-to-power ratio and pin speed improvements are critical for managing the extreme power demands of today's AI data centers. The improved power efficiency is possible because of Micron advancements such as doubling of the through-silicon vias (TSVs) over competitive HBM3 offerings, thermal impedance reduction through a five-time increase in metal density, and an energy-efficient data path design.

TSMC Said to Start Construction of 1.4 nm Fab in 2026

According to Taiwanese media, TSMC will start production of its first 1.4 nm fab in 2026, with chip production in the fab said to start sometime in 2027 or 2028. The new fab will be located in Longtan Science Park outside of Hsinchu in Taiwan, where many of TSMC's current fabs are located. TSMC is currently constructing a 2 nm and below node R&D facility at a nearby plot of land to where the new fab is expected to be built. This facility is expected to be finished in 2025 and TSMC has been allocated a total area of just over 158 hectares of land for future expansion in the area.

In related news, TSMC is expected to be charging US$25,000 per 2 nm GAA wafer, which is an increase of about a fifth compared to its 3 nm wafers which are going for around US$20,000. This is largely due to the nodes being fully booked and TSMC being able to charge a premium for its cutting edge nodes. TSMC is also expanding in CoWoS packaging facilities due to increased demand from both AMD and NVIDIA for AI related products. Currently TSMC is said to be able to output 12,000 CoWoS wafers per month and this is twice as much as last year, yet TSMC is unable to meet demand from its customers.

Samsung Electronics Unveils Foundry Vision in the AI Era

Samsung Electronics, a world leader in advanced semiconductor technology, today announced its latest foundry technology innovations and business strategy at the 7th annual Samsung Foundry Forum (SFF) 2023. Under the theme "Innovation Beyond Boundaries," this year's forum delved into Samsung Foundry's mission to address customer needs in the artificial intelligence (AI) era through advanced semiconductor technology.

Over 700 guests, from customers and partners of Samsung Foundry, attended this year's event, of which 38 companies hosted their own booths to share the latest technology trends in the foundry industry.

Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing

Today, Intel announced the release of its newest quantum research chip, Tunnel Falls, a 12-qubit silicon chip, and it is making the chip available to the quantum research community. In addition, Intel is collaborating with the Laboratory for Physical Sciences (LPS) at the University of Maryland, College Park's Qubit Collaboratory (LQC), a national-level Quantum Information Sciences (QIS) Research Center, to advance quantum computing research.

"Tunnel Falls is Intel's most advanced silicon spin qubit chip to date and draws upon the company's decades of transistor design and manufacturing expertise. The release of the new chip is the next step in Intel's long-term strategy to build a full-stack commercial quantum computing system. While there are still fundamental questions and challenges that must be solved along the path to a fault-tolerant quantum computer, the academic community can now explore this technology and accelerate research development."—Jim Clarke, director of Quantum Hardware, Intel

Ex-Samsung Executive Arrested for Stealing Company Secrets to Build Fabs in China

According to the latest report from Reuters, a former Samsung executive was arrested by the South Korean authorities yesterday, being accused of stealing company secrets to build a similar chip production facility in China. The former executive had worked for SK Hynix before joining Samsung, where he was involved in the Samsung Electronics division responsible for semiconductor factories. According to the report, the person planned to build a competing factory 1.5 km from a Samsung chip manufacturing facility in Xian, China. The suspect, who was not identified publically, has a collective of 28 years of experience with the South Korean chip makers.

Interestingly, the suspect also caused financial harm to the company, which the Suwon District Prosecutors' Office estimates to be around 300 billion won ($233 million). Prosecutors have announced the indictment of six additional individuals suspected of involvement in the case, including an employee of an inspection company who is charged with allegedly disclosing the architectural blueprint of Samsung's semiconductor plant. A police official commented, "We will sternly deal with any leakage of our technology abroad and strongly respond to illegal leak of domestic companies' core technologies in semiconductor, automobile and shipbuilding sectors among other."
Return to Keyword Browsing
Jul 16th, 2024 00:50 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts