HighPoint M.2/E1.S NVMe RAID AICs Deliver Unparalleled Speed and Scalability for GPU Server Applications
HighPoint Technologies, a leader in advanced PCIe Switch and RAID AIC, Adapter and Storage Enclosure solutions, has announced an extensive line of M.2 and E1.S RAID AICs engineered to accommodate high-performance GPU-centric workloads. Designed for enterprise and datacenter class computing environments, HighPoint NVMe RAID AICs deliver class-leading performance and unmatched scalability, enabling modern x86/AMD and Arm platforms to support 4 to 16 NVMe SSDs via a single PCIe Gen 4 or Gen 5 x16 slot. State-of-the-art PCIe Switching Architecture and flexible RAID technology enable administrators to custom tailor M.2 and E1.S storage configurations for a broad range of data-intensive applications, and seamlessly scale or expand existing storage configurations to meet the needs of evolving workflows.
Unprecedented Storage Density
HighPoint NVMe AICs have established a new milestone for M.2 NVMe storage. HighPoint's revolutionary Dual-Width AIC architecture enables a single PCIe Gen 4 or Gen 5 x16 slot to directly host up to 16 M.2 NVMe SSDs, and 128 TB of storage capacity, at speeds up to 28 GB/s; a truly unprecedented advancement in compact, single-device storage expansion solutions. State-of-the art PCIe switching technology and advanced cooling systems maximize transfer throughput and ensure M.2 configurations operate at peak efficiency by halting the performance sapping threat of thermal throttling in its tracks.
Unprecedented Storage Density
HighPoint NVMe AICs have established a new milestone for M.2 NVMe storage. HighPoint's revolutionary Dual-Width AIC architecture enables a single PCIe Gen 4 or Gen 5 x16 slot to directly host up to 16 M.2 NVMe SSDs, and 128 TB of storage capacity, at speeds up to 28 GB/s; a truly unprecedented advancement in compact, single-device storage expansion solutions. State-of-the art PCIe switching technology and advanced cooling systems maximize transfer throughput and ensure M.2 configurations operate at peak efficiency by halting the performance sapping threat of thermal throttling in its tracks.