News Posts matching #Manufacturing

Return to Keyword Browsing

Intel Foundry Adds New Customers to RAMP-C Project for US Defense

Intel Foundry has announced the onboarding of new defense industrial base (DIB) customers, Trusted Semiconductor Solutions and Reliable MicroSystems, as part of the third phase of the Rapid Assured Microelectronics Prototypes - Commercial (RAMP-C) efforts under the Trusted & Assured Microelectronics (T&AM) Program in the Office of the Under Secretary of Defense for Research and Engineering (OUSD (R&E)). The RAMP-C project, awarded through the Strategic & Spectrum Missions Advanced Resilient Trusted Systems (S²MARTS) Other Transaction Authority (OTA), allows DIB customers to take advantage of Intel Foundry's leading-edge Intel 18A process technology and advanced packaging for prototypes and high-volume manufacturing of commercial and DIB products for the U.S. Department of Defense (DoD).

"We are very excited to welcome Trusted Semiconductor Solutions and Reliable MicroSystems to the RAMP-C project we are engaged in with the DoD. The collaboration will drive cutting-edge, secure semiconductor solutions essential for our nation's security, economic growth and technological leadership. We are proud of the pivotal role Intel Foundry plays in supporting U.S. national defense and look forward to working closely with our newest DIB customers to enable their innovations with our leading-edge Intel 18A technology," said Kapil Wadhera, vice president of Intel Foundry and general manager of Aerospace, Defense and Government Business Group.

U.S. Department of Commerce Announces $1.4 Billion to Support U.S. Semiconductor Advanced Packaging

Today, the U.S. Department of Commerce has announced that CHIPS National Advanced Packaging Manufacturing Program (NAPMP) has finalized $1.4 billion in award funding to bolster U.S. leadership in advanced packaging and enable new technologies to be validated and transitioned at scale to U.S. manufacturing. These awards will help establish a self-sustaining, high-volume, domestic, advanced packaging industry where advanced node chips are both manufactured and packaged in the United States.

These awards include:
  • A total of $300 million under the CHIPS NAPMP's first Notice of Funding Opportunity (NOFO) for advanced substrates and material research to Absolics Inc., Applied Materials Inc., and Arizona State University. This follows the previously announced intent to enter negotiations on November 21, 2024
  • $1.1 billion to Natcast to operate the advanced packaging capabilities of the CHIPS for America NSTC Prototyping and NAPMP Advanced Packaging Piloting Facility (PPF). This follows the previously announced CHIPS R&D Facilities Model on July 12, 2024, and planned site selection for the PPF on January 6, 2025

MSI Shows Behind the Scenes Look at Motherboard Manufacturing Process

MSI has provided a detailed look into its motherboard production facilities through a new interactive webpage. The company has outlined the 15-step manufacturing process that transforms bare circuit boards into complete motherboards. The process begins with solder paste printing, where a precise layer of conductive paste is applied to the bare PCB. This is followed by automated inspection using imaging systems to verify proper paste placement. High-speed machines then position electronic components onto the board before they move through reflow ovens that permanently bond the components. Multiple inspection stages are integrated throughout the assembly line, including automated optical systems that check both sides of the board. Specialized machines handle routing, component insertion, wave soldering, and alloy welding.

Each board undergoes circuit testing and receives mechanical components through automated screw-locking systems before final functional testing and molding. The complexity of modern motherboard manufacturing requires rigorous quality checks and final power tests before the motherboard leaves manufacturing facilities. For interested enthusiasts, MSI's new landing page is here. The manufacturing reveal accompanies MSI's launch of two new motherboard series—Z790 and B860. To celebrate this launch, MSI has announced promotional events running from January 20 to March 31, 2025, including Steam game codes with select product purchases. A new reward program offers points for product reviews and referrals.

Rapidus Installs Japan's First ASML NXE:3800E EUV Lithography Machine

Rapidus Corporation, a manufacturer of advanced logic semiconductors, today announced the delivery and installation of ASML's EUV lithography equipment at its Innovative Integration for Manufacturing (IIM-1) foundry, an advanced semiconductor development and manufacturing fab currently under construction in Chitose, Hokkaido. To commemorate the installation, a ceremony was held at Portom Hall in the New Chitose Airport.

This is a significant milestone for Japan's semiconductor industry, marking the first time that an EUV lithography tool will be used for mass production in the country. In addition to the EUV lithography machinery, Rapidus will install additional complementary advanced semiconductor manufacturing equipment, as well as full automated material handling systems in its IIM-1 foundry to optimize 2 nm generation gate-all-around (GAA) semiconductor manufacturing.

CoolIT Systems Continues to Expand Manufacturing Capabilities

CoolIT Systems (CoolIT), the world's leader in liquid cooling systems for advanced computing, is continuing to invest in its manufacturing capabilities to support the surging demand for liquid cooling of AI systems. Along with a 25x capacity expansion in a new Calgary, Canada manufacturing facility, CoolIT recently hired Scott Hudson as Vice President of Quality to lead the company's development of world-class quality operations and systems.

"As the leader in direct liquid cooling for over two decades, our customers expect leading performance and reliability from CoolIT products," said CoolIT's COO Patrick McGinn. " Adding Scott as CoolIT's VP of Quality reinforces CoolIT's commitment to developing best-in-class quality standards for liquid cooling products." Scott joins CoolIT from Celestica, where he led the company's global quality strategy for all business segments across over 30 sites. His career spans three decades of quality leadership roles in the worldwide computer hardware industry, overseeing multi-site operations in North America, Asia and Europe.

Micron Receives $6.1B in CHIPS Act Funding to Boost US Memory Manufacturing

The Biden-Harris Administration has given Micron Technology up to $6.165 billion in direct funds through the CHIPS Incentives Program to back the company's manufacturing growth. The money will allow Micron to execute its plan announced in October 2022 by investing about $100 billion into Clay, New York fab, and $25 billion into Idaho over 20 years aiming to boost the United States' advanced memory manufacturing from under 2% to around 10% by 2035. This large investment aims to make the U.S. economy stronger by creating a home supply of cutting-edge DRAM chips, moreover it is expected to create approximately 20,000 job across the U.S. Micron plans to spend about $50 billion before 2030 focusing on making more advanced memory semiconductor technology.

Also, the Department of Commerce has put pen to paper on a first draft of terms with Micron. This could lead to funding of up to $275 million to upgrade its Manassas, Virginia plant. The $2 billion investment project aims to bring Micron's 1-alpha technology back to U.S. The 1-alpha process was launched in 2021 and is used for the latest LPDDR5 DRAM chips. This would boost monthly wafer production and create over 400 factory jobs. At its busiest, the project could generate up to 2,700 jobs in the local area.

US to Implement Semiconductor Restrictions on Chinese Equipment Makers

The Biden administration is set to announce new, targeted restrictions on China's semiconductor industry, focusing primarily on emerging chip manufacturing equipment companies rather than broad industry-wide limitations. According to Bloomberg, these new restrictions are supposed to take effect on Monday. The new rules will specifically target two manufacturing facilities owned by Semiconductor Manufacturing International Corp. (SMIC) and will add select companies to the US Entity List, restricting their access to American technology. However, most of Huawei's suppliers can continue their operations, suggesting a more mild strategy. The restrictions will focus on over 100 emerging Chinese semiconductor equipment manufacturers, many of which receive government funding. These companies are developing tools intended to replace those currently supplied by industry leaders such as ASML, Applied Materials, and Tokyo Electron.

The moderated approach comes after significant lobbying efforts from American semiconductor companies, who argued that stricter restrictions could disadvantage them against international competitors. Major firms like Applied Materials, KLA, and Lam Research voiced concerns about losing market share to companies in Japan and the Netherlands, where similar but less stringent export controls are in place. Notably, Japanese companies like SUMCO are already seeing the revenue impacts of Chinese independence. Lastly, the restrictions will have a limited effect on China's memory chip sector. The new measures will not directly affect ChangXin Memory Technologies (CXMT), a significant Chinese DRAM manufacturer capable of producing high-bandwidth memory for AI applications.

Worldwide Silicon Wafer Shipments Increase 6% in Q3 2024, SEMI Reports

Worldwide silicon wafer shipments increased 5.9% quarter-over-quarter to 3,214 million square inches (MSI) in the third quarter of 2024 and registered 6.8% growth from the 3,010 million square inches recorded during the same quarter last year, the SEMI Silicon Manufacturers Group (SMG) reported in its quarterly analysis of the silicon wafer industry.

"The third quarter wafer shipment results continued the upward trend which started in the second quarter of this year," said Lee Chungwei (李崇偉), Chairman of SEMI SMG and Vice President and Chief Auditor at GlobalWafers. "Inventory levels have declined throughout the supply chain but generally remain high. Demand for advanced wafers used for AI continues to be strong. However, the silicon wafer demand for automotive and industrial uses continues to be muted, while the demand for silicon used for handset and other consumer products has seen some areas of improvement. As a result, 2025 is likely to continue upward trends, but total shipments are not yet expected to return to the peak levels of 2022."

SMIC Reports 2024 Third Quarter Results

Semiconductor Manufacturing International Corporation (SMIC), one of the leading semiconductor foundries in the world, today announced its consolidated results of operations for the three months ended September 30, 2024.

Third Quarter 2024 Highlights
  • Revenue was $2,171.2 million in 3Q24, compared to $1,901.3 million in 2Q24, and $1,620.6 million in 3Q23.
  • Gross profit was $444.2 million in 3Q24, compared to $265.1 million in 2Q24, and $321.6 million in 3Q23.
  • Gross margin was 20.5% in 3Q24, compared to 13.9% in 2Q24 and 19.8% in 3Q23.

TSMC Arizona Achieves 4% Higher Yields Than Taiwanese Facilities, Marking Progress for US Silicon Manufacturing

The American semiconductor landscape reached a significant milestone as TSMC's new Arizona manufacturing facility demonstrated remarkable production efficiency, exceeding its Taiwanese counterparts by 4% in yield rates. This achievement, revealed at a recent industry webinar by the company's US division chief, represents a major step forward in America's push to strengthen domestic chip manufacturing capabilities. Since initiating its 4 nm node production operations this spring, the Phoenix-based facility has demonstrated impressive technical proficiency, achieving production standards that match and surpass TSMC's established Taiwanese facilities. The project, backed by substantial federal support, including $11.6 billion in combined grants and loans plus significant tax incentives, aims to establish three cutting-edge manufacturing plants in Arizona.

The company's global leadership praised the facility's performance, noting its strategic importance in demonstrating TSMC's ability to maintain exceptional manufacturing standards across international locations. This success carries particular weight given the project's earlier hurdles, which included workforce challenges and timeline adjustments that shifted the entire production schedule by approximately one year. This development gains additional significance against industry-wide challenges, particularly as competitors like Intel and Samsung face operational and financial obstacles. The semiconductor giant's plans now extend to potential further expansion, with the Phoenix site capable of hosting up to six manufacturing facilities. Future growth prospects could be enhanced by proposed additional government initiatives supporting domestic chip production.

TSMC Produces Apple A16 Chips in Arizona Facility, a First on the American Soil

TSMC has reportedly initiated production of Apple's last-generation A16 Bionic processors at its newly constructed Fab 21 in Arizona. This development comes significantly earlier than anticipated, with the facility's full-scale production initially scheduled for 2025. According to insights from industry expert Tim Culpan, the Arizona plant is already churning out a modest but noteworthy quantity of A16 Bionic chips. These processors are being manufactured using TSMC's NP4 4 nm semiconductor node. Culpan also hinted at a substantial increase in production capacity once the second stage of Fab 21's initial phase becomes operational.

This early start serves a critical function for TSMC, allowing the company to calibrate its advanced equipment and refine its manufacturing processes thoroughly. Using the well-established A16 Bionic design, TSMC can ensure its new facility meets the exacting standards required for next-generation semiconductor production. The news aligns with recent industry buzz suggesting that Fab 21 is already achieving yield rates comparable to TSMC's long-established Taiwanese plants—a remarkable feat for a newly launched facility. While current output remains limited, this milestone marks a significant step in TSMC's expansion into US-based chip manufacturing. With more fabs on American soil, companies can push domestic manufacturing and ensure that geopolitics don't hinder the vital supply chain.

Texas Instruments to Receive up to $1.6 billion in CHIPS Act Funding for Semiconductor Manufacturing Facilities in Texas and Utah

Texas Instruments (TI) (Nasdaq: TXN) and the U.S. Department of Commerce have signed a non-binding Preliminary Memorandum of Terms for up to $1.6 billion in proposed direct funding under the CHIPS and Science Act to support three 300 mm wafer fabs already under construction in Texas and Utah. In addition, TI expects to receive an estimated $6 billion to $8 billion from the U.S. Department of Treasury's Investment Tax Credit for qualified U.S. manufacturing investments. The proposed direct funding, coupled with the investment tax credit, would help TI provide a geopolitically dependable supply of essential analog and embedded processing semiconductors.

"The historic CHIPS Act is enabling more semiconductor manufacturing capacity in the U.S., making the semiconductor ecosystem stronger and more resilient," said Haviv Ilan, president and CEO of Texas Instruments. "Our investments further strengthen our competitive advantage in manufacturing and technology as we expand our 300 mm manufacturing operations in the U.S. With plans to grow our internal manufacturing to more than 95% by 2030, we're building geopolitically dependable, 300 mm capacity at scale to provide the analog and embedded processing chips our customers will need for years to come."

Kioxia Announces Completion of New Flash Memory Manufacturing Building in Kitakami Plant

Kioxia Corporation, a world leader in memory solutions, today announced that the building construction of Fab2 (K2) of its industry-leading Kitakami Plant was completed in July. K2 is the second flash memory manufacturing facility at the Kitakami Plant in the Iwate Prefecture of Japan. As demand is recovering, the company will gradually make capital investments while closely monitoring flash memory market trends. Kioxia plans to start operation at K2 in the fall of Calendar Year 2025.

In addition, some administration and engineering departments will move into a new administration building located adjacent to K2 beginning in November 2024 to oversee the operation of K2. A portion of investment for K2 will be subsidized by the Japanese government according to the plan approved in February 2024.

SK hynix Board Approves Yongin Semiconductor Cluster Investment Plan

SK hynix Inc. announced today that it has decided to invest about 9.4 trillion won in building the first fab and business facilities of the Yongin Semiconductor Cluster after the board resolution on the 26th. SK hynix designs to start construction of the 1st fab to be built in the Yongin cluster in March next year and complete it in May 2027, and have received an investment approval from the board of directors prior to it. The company will make every effort to build the fab to lay the foundation for the company's future growth and respond to the rapidly increasing demand for AI memory semiconductors.

The Yongin Cluster, which will be built on a 4.15 million square meter site in Wonsam-myeon, Yongin, Gyeonggi Province, is currently under site preparation and infrastructure construction. SK hynix has decided to build four state-of-the-art fabs that will produce next-generation semiconductors, and a semiconductor cooperation complex with more than 50 small local companies. After the construction of the 1st fab, the company aims to complete the remaining three fabs sequentially to grow the Yongin Cluster into a "Global AI semiconductor production base."

Taiwanese Chipmakers Expand Overseas to Capitalize on Geopolitical Shifts and De-Sinicization Benefits

On June 5th, Vanguard and NXP announced plans to jointly establish VisionPower Semiconductor Manufacturing Company (VSMC) in Singapore to build a 12-inch wafer plant. TrendForce posits that this move reflects the trend of global supply chains shifting "Out of China, Out of Taiwan"(OOC/OOT), with Taiwanese companies accelerating their overseas expansion to improve regional capacity flexibility and competitiveness.

TrendForce noted that the semiconductor supply chain has been diversifying over the past two years to mitigate geopolitical and pandemic-related risks, forming two major segments: China's domestic supply chain and a non-China supply chain. Recent US tariff increases have accelerated this shift, leading to increased orders from American customers.

Asetek Announces New AI Optimized Cold Plate Solution In Collaboration With Fabric8Labs

Asetek, innovator of gaming hardware for next-level immersive gaming experiences and the creator of the all-in-one (AIO) liquid cooler, today announced a strategic partnership with Fabric8labs, a leading innovator in metal 3D printing. This exclusive partnership with Fabric8Labs covers the commercial and consumer desktop markets and introduces a revolutionary advancement in liquid cooling technology, showcased in the AI Optimized Cold Plate. Leveraging Fabric8Labs' cutting-edge Electrochemical Additive Manufacturing (ECAM) technology, Asetek has developed a cold plate design that will redefine industry leading performance.

The partnership embodies a shared commitment to innovation that drives superior performance, high quality, and lasting reliability. The AI Optimized Cold Plate demonstrates a significant improvement over previous generations, highlighting the effectiveness of this collaboration. Fabric8Labs' unique 3D printing technology plays a pivotal role in this innovation. Their ECAM method allows for the creation of complex, high-resolution structures that significantly improve thermal capabilities through enhanced fluid dynamics. Also, by eliminating the need for post-processing, ECAM ensures the highest quality and integrity of each cold plate and is massively scalable to support high-volume production demands.

US Backs TSMC's $65B Arizona Investment with $11.6B Support Package

According to the latest report from Bloomberg, the US government under Joe Biden's administration has announced plans to provide Taiwan Semiconductor Manufacturing Company (TSMC) with a substantial financial support package worth $11.6 billion. The package is composed of $6.6 billion in grants and up to $5 billion in loans. This represents the most significant financial assistance approved under the CHIPS and Science Act, a key initiative to resurrect the US chip industry. The funding will aid TSMC in establishing three cutting-edge semiconductor production facilities in Arizona, with the company's total investment in the state expected to exceed an impressive $65 billion. TSMC's multi-phase Arizona project will commence with the construction of a fab module near its existing Fab 21 facility. Production using 4 nm and 5 nm process nodes is slated to begin by early 2025. The second phase, scheduled for 2028, will focus on even more advanced 2 nm and 3 nm technologies.

TSMC has kept details about the third facility's production timeline and process node under wraps. The company's massive investment in Arizona is expected to profoundly impact the local economy, creating 6,000 high-tech manufacturing jobs and over 20,000 construction positions. Moreover, $50 million has been earmarked for training local workers, which aligns with President Joe Biden's goal of bolstering domestic manufacturing and technological independence. However, TSMC's Arizona projects have encountered obstacles, including labor disputes and uncertainties regarding government support, resulting in delays for the second facility's production timeline. Additionally, reports suggest that at least one TSMC supplier has abandoned plans to set up operations in Arizona due to workforce-related challenges.

Huawei and SMIC Prepare Quadruple Semiconductor Patterning for 5 nm Production

According to Bloomberg's latest investigation, Huawei and Semiconductor Manufacturing International Corporation (SMIC) have submitted patents on the self-aligned quadruple patterning (SAQP) pattern etching technique to enable SMIC to achieve 5 nm semiconductor production. The two Chinese giants have been working with the Deep Ultra Violet (DUV) machinery to develop a pattern etching technique allowing SMIC to produce a node compliant with the US exporting rules while maintaining the density improvements from the previously announced 7 nm node. In the 7 nm process, SMIC most likely used self-aligned dual patterning (SADP) with DUV tools, but for the increased density of the 5 nm node, a doubling to SAQP is required. In semiconductor manufacturing, lithography tools take multiple turns to etch the design of the silicon wafer.

Especially with smaller nodes getting ever-increasing density requirements, it is becoming challenging to etch sub-10 nm designs using DUV tools. That is where Extreme Ultra Violet (EUV) tools from ASML come into play. With EUV, the wavelengths of the lithography printers are 14 times smaller than DUV, at only 13.5 nm, compared to 193 nm of ArF immersion DUV systems. This means that without EUV, SMIC has to look into alternatives like SAQP to increase the density of its nodes and, as a result, include more complications and possibly lower yields. As an example, Intel tried to use SAQP in its first 10 nm nodes to reduce reliance on EUV, which resulted in a series of delays and complications, eventually pushing Intel into EUV. While Huawei and SMIC may develop a more efficient solution for SAQP, the use of EUV is imminent as the regular DUV can not keep up with the increasing density of semiconductor nodes. Given that ASML can't ship its EUV machinery to China, Huawei is supposedly developing its own EUV machines, but will likely take a few more years to show.

US Government to Announce Massive Grant for Intel's Arizona Facility

According to the latest report by Reuters, the US government is preparing to announce a multi-billion dollar grant for Intel's chip manufacturing operations in Arizona next week, possibly worth more than $10 billion. US President Joe Biden and Commerce Secretary Gina Raimondo will make the announcement, which is part of the 2022 CHIPS and Science Act aimed at expanding US chip production and reducing dependence on China and Taiwan manufacturing. The exact amount of the grant has yet to be confirmed, but rumors suggest it could exceed $10 billion, making it the most significant award yet under the CHIPS Act. The funding will include grants and loans to bolster Intel's competitive position and support the company's US semiconductor manufacturing expansion plans. This comes as a surprise just a day after the Pentagon reportedly refused to invest $2.5 billion in Intel as a part of a secret defense grant.

Intel has been investing significantly in its US expansion, recently opening a $3.5 billion advanced packaging facility in New Mexico, supposed to create extravagant packaging technology like Foveros and EMIB. The chipmaker is also expanding its semiconductor manufacturing capacity in Arizona, with plans to build new fabs in the state. Arizona is quickly becoming a significant hub for semiconductor manufacturing in the United States. In addition to Intel's expansion, Taiwan Semiconductor Manufacturing Company (TSMC) is also building new fabs in the state, attracting supply partners to the region. CHIPS Act has a total funding capacity of $39 billion allocated for semiconductor production and $11 billion for research and development. The Intel grant will likely cover the production part, as Team Blue has been reshaping its business units with the Intel Product and Intel Foundry segments.

MICLEDI Microdisplays Raises Series A Funding to Advance Best-in-Class microLED Display Design and Manufacturing

MICLEDI Microdisplays today announced a first closing of its Series A funding round with participation from imec.xpand, PMV, imec, KBC and SFPIM demonstrating strong support for the company's value proposition and commercial and technological progress achieved in the seed round. Series A follows a significant seed round award and additional non-dilutive funding in the form of grants and other vehicles from VLAIO. This brings the company's total funding to date to nearly $30 million.

"The company's achievements during this seed round have been astounding," said Sean Lord, CEO of MICLEDI. "Our door is open to engagements with some of the world's largest and most innovative electronic product manufacturing companies, most of whom are working on their own internal development projects for augmented reality (AR) displays in such diverse use cases as smart-wearable devices and automotive HUDs. This level of total funding to date is almost unheard of for a four-year-old startup."

TSMC Customers Request Construction of Additional AI Chip Fabs

Morris Chang, TSMC's founder and semiconductor industry icon, was present at the opening ceremony of his company's new semiconductor fabrication plant in Kumamoto Prefecture, Japan. According to a Nikkei Asia article, Chang predicted that the nation will experience "a chip renaissance" during his February 24 commencement speech. The Japanese government also announced that it will supply an additional ¥732 billion ($4.86 billion) in subsidies for Taiwan Semiconductor Manufacturing Co. to expand semiconductor operations on the island of Kyūshū. Economy Minister Ken Saito stated: "TSMC is the most important partner for Japan in realizing digital transformation, and its Kumamoto factory is an important contributor for us to stably procure cutting-edge logic chips that is extremely essential for the future of industries in Japan."

Chang disclosed some interesting insights during last weekend's conference segment—according to Nikkei's report, he revealed that unnamed TSMC customers had made some outlandish requests: "They are not talking about tens of thousands of wafers. They are talking about fabs, (saying): 'We need so many fabs. We need three fabs, five fabs, 10 fabs.' Well, I can hardly believe that one." The Taiwanese chip manufacturing giant reportedly has the resources to create a new "Gigafab" within reasonable timeframes, but demands for (up to) ten new plants are extremely fanciful. Chang set expectations at a reasonable level—he predicted that demand for AI processors would lie somewhere in the middle ground: "between tens of thousands of wafers and tens of fabs." Past insider reports suggested that OpenAI has been discussing the formation of a proprietary fabrication network, with proposed investments of roughly $5 to $7 trillion. OpenAI CEO, Sam Altman, reportedly engaged in talks with notable contract chip manufacturers—The Wall Street Journal posited that TSMC would be an ideal partner.

GlobalFoundries and Biden-Harris Administration Announce CHIPS and Science Act Funding for Essential Chip Manufacturing

The U.S. Department of Commerce today announced $1.5 billion in planned direct funding for GlobalFoundries (Nasdaq: GFS) (GF) as part of the U.S. CHIPS and Science Act. This investment will enable GF to expand and create new manufacturing capacity and capabilities to securely produce more essential chips for automotive, IoT, aerospace, defense, and other vital markets.

New York-headquartered GF, celebrating its 15th year of operations, is the only U.S.-based pure play foundry with a global manufacturing footprint including facilities in the U.S., Europe, and Singapore. GF is the first semiconductor pure play foundry to receive a major award (over $1.5 billion) from the CHIPS and Science Act, designed to strengthen American semiconductor manufacturing, supply chains and national security. The proposed funding will support three GF projects:

TSMC JASM Set to Expand in Kumamoto Japan

TSM, Sony Semiconductor Solutions Corporation ("SSS"), DENSO Corporation ("DENSO") and Toyota Motor Corporation ("Toyota") today announced further investment into Japan Advanced Semiconductor Manufacturing, Inc. ("JASM"), TSMC's majority-owned manufacturing subsidiary in Kumamoto Prefecture, Japan, to build a second fab, which is scheduled to begin operation by the end of the 2027 calendar year. Toyota will also take a minority stake. Together with JASM's first fab, which is scheduled to begin operation in 2024, the overall investment in JASM will exceed US$20 billion with strong support from the Japanese government.

In response to rising customer demand, JASM plans to commence construction of its second fab by the end of 2024. The increased production scale is also expected to improve overall cost structure and supply chain efficiency for JASM. With both fabs, JASM's Kumamoto site is expected to offer a total production capacity of more than 100,000 12-inch wafers per month starting from 40, 22/28, 12/16 and 6/7 nanometer process technologies for automotive, industrial, consumer and HPC-related applications. The capacity plan may be further adjusted based upon customer demand. With both fabs, the Kumamoto site is expected to directly create more than 3,400 high-tech professional jobs.

TSMC Overtakes Intel and Samsung to Become World's Largest Semiconductor Maker by Revenue

Taiwan Semiconductor Manufacturing Company (TSMC) has reached a significant milestone, overtaking Intel and Samsung to become the world's largest semiconductor maker by revenue. According to Taiwanese financial analyst Dan Nystedt, TSMC earned $69.3 billion in revenue in 2023, surpassing Intel's $63 billion and Samsung's $58 billion. This is a remarkable achievement for the Taiwanese chipmaker, which has historically lagged behind Intel and Samsung in terms of revenue despite being the world's largest semiconductor foundry. TSMC's meteoric rise has been fueled by the increased demand for everything digital - from PCs to game consoles - during the coronavirus pandemic in 2020, and AI demand in the previous year. With its cutting-edge production capabilities allowing it to manufacture chips using the latest process technologies, TSMC has pulled far ahead of Intel and Samsung and can now charge a premium for its services.

This is reflected in its financials. For the 6th straight quarter, TSMC's Q4 2023 revenue of $19.55 billion also beat Intel's $15.41 billion and Samsung's $16.42 billion chip division revenue. As the world continues its rapid transformation in the AI era of devices, TSMC looks set to hold on to its top position for the foreseeable future. Its revenue and profits will likely continue to eclipse those of historical giants like Intel and Samsung. However, a big contender is Intel Foundry Services, which is slowly starting to gain external customers. If IFS takes off and new customers start adopting Intel as their foundry of choice, team blue could regain leadership in the coming years.

SMIC Reportedly Ramping Up 5 Nanometer Production Line in Shanghai

Semiconductor Manufacturing International Corp (SMIC) is preparing new semiconductor production lines at its Shanghai facilities according to a fresh Reuters report—China's largest contract chip maker is linked to next generation Huawei SoC designs, possibly 5 nm-based Kirin models. SMIC's newest Shanghai wafer fabrication site was an expensive endeavor—involving a $8.8 billion investment—but their flagship lines face a very challenging scenario with new phases of mass production. Huawei, a key customer, is expected to "upgrade" to a 5 nm process for new chip designs—their current flagship, Kirin 9000S, is based on a SMIC 7 nm node. Reuter's industry sources believe that the foundry's current stable of "U.S. and Dutch-made equipment" will be deployed to "produce 5-nanometer chips."

Revised trade rulings have prevented ASML shipping advanced DUV machinery to mainland China manufacturing sites—SMIC workers have reportedly already repurposed the existing inventory of lithography equipment for next-gen pursuits. Burn Lin (ex-TSMC), a renowned "chip guru," believes that it is possible to mass produce 5 nm product on slightly antiquated gear (previously used for 7 nm)—but the main caveats being increased expense and low yields. According to a DigiTimes Asia report, mass production of a 5 nm SoC on SMIC's existing DUV lithography would require four-fold patterning in a best case scenario.
Return to Keyword Browsing
Jan 20th, 2025 17:27 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts