News Posts matching #Metamaterial

Return to Keyword Browsing

Osaka Scientists Unveil 'Living' Electrodes That Can Enhance Silicon Devices

Shrinking components was (and still is) the main way to boost the speed of all electronic devices; however, as devices get tinier, making them becomes trickier. A group of scientists from SANKEN (The Institute of Scientific and Industrial Research), at Osaka University has discovered another method to enhance performance: putting a special metal layer known as a metamaterial on top of a silicon base to make electrons move faster. This approach shows promise, but the tricky part is managing the metamaterial's structure so it can adapt to real-world needs.

To address this, the team looked into vanadium dioxide (VO₂). When heated, VO₂ changes from non-conductive to metallic, allowing it to carry electric charge like small adjustable electrodes. The researchers used this effect to create 'living' microelectrodes, which made silicon photodetectors better at spotting terahertz light. "We made a terahertz photodetector with VO₂ as a metamaterial. Using a precise method, we created a high-quality VO₂ layer on silicon. By controlling the temperature, we adjusted the size of the metallic regions—much larger than previously possible—which affected how the silicon detected terahertz light," says lead author Ai I. Osaka.

European Researchers Develop New 3D Metamaterial for Data Storage

Researchers from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), TU Chemnitz, TU Dresden and Forschungszentrum Jülich have been the first to demonstrate that not just individual bits, but entire bit sequences can be stored in cylindrical domains: tiny, cylindrical areas measuring just around 100 nanometers. As the team reports in the journal Advanced Electronic Materials, these findings could pave the way for novel types of data storage and sensors, including even magnetic variants of neural networks.

"A cylindrical domain, which we physicists also call a bubble domain, is a tiny, cylindrical area in a thin magnetic layer. Its spins, the electrons' intrinsic angular momentum that generates the magnetic moment in the material, point in a specific direction. This creates a magnetization that differs from the rest of the environment. Imagine a small, cylinder-shaped magnetic bubble floating in a sea of opposite magnetization," says Prof. Olav Hellwig from HZDR's Institute of Ion Beam Physics and Materials Research, describing the subject of his research. He and his team are confident that such magnetic structures possess a great potential for spintronic applications.
Return to Keyword Browsing
Mar 31st, 2025 18:18 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts