News Posts matching #Strix Point

Return to Keyword Browsing

AOKZOE A1 X Gaming Handheld Unveiled With AMD Strix Point Firepower

The market for gaming handhelds has been expanding at an unprecedented rate, largely thanks to the impressive performance and efficiency improvements brought to the table by modern APUs. AMD's Strix Point APUs are no exception, and are expected to power a multitude of high-end handhelds. Thanks to its 12 (4 Zen 5 + 8 Zen 5c) cores and RDNA 3.5-based Radeon 890M iGPU, the Ryzen AI 9 HX 370 is an impressive performer for sure. The chip can already be found in a plethora of gaming-oriented handhelds and laptops, and now a fresh offering from AOKZOE is poised to join the list.

Of course, AOKZOE is not nearly as well known as some of its competitors, such as GPD and Minisforum. AOKZOE has revealed only a single image for the product so far, and the differences between the A1, A1 Pro, and A1 X are expected to be minimal, at least on the outside. The company has revealed that the handheld will sport the aforementioned Strix Point flagship APU, along with an 8-inch display with a refresh rate of 120 Hz and a 72.7 Wh battery. These specifications are nothing extraordinary nowadays, and further details regarding the product, such as thermal performance, display quality, battery life, and the like can only be established with proper hands-on reviews. There are is no information on pricing or availability as of now, and more such details should become available as we inch closer to the A1 X's release.

Strix Point-Powered GPD Win Mini Gaming Handheld Goes on Sale

The market for compact gaming handheld is expanding at an unprecedented rate, thanks to the popularity boom that handhelds have received in recent months. The GPD Win Min (2025) is one such offering, sitting alongside the rest of interesting gaming products that GPD is known for. The Win Mini is now available for pre-order on Indiegogo, with a starting price of $769 (backers only), and a retail price of $839. Of course, interested buyers are encouraged to be mindful of the risks associated with crowdfunding campaigns, although GPD has mostly had a complaint-free track record.

Unfortunately, and rather unsurprisingly, the entry-level variant does not ship with the latest AMD Strix Point chips, but rather the older Hawk Point offerings, specifically the Ryzen 7 8840U with the Radeon 780M iGPU with 12 CUs. The higher-tier variants ship with Strix Point APUs, starting at the Ryzen AI 9 HX 365 APU, going all the way up to the 12-core Ryzen AI 9 HX 370 with the powerful Radeon 890M iGPU. To accommodate the new APUs, GPD has reworked the thermals, and has added room for full-sized M.2 2280 SSD drives as well. The product packs hall-effect joysticks, plug-and-play grips, and a bunch of useful ports including USB4, USB 3.2 Type-C, an SD Card slot, an audio jack, as well as a good old USB-A port. The 7-inch 1080p display ramps up to 120 Hz, and the system can be equipped with up to 64 GB of memory and 2 TB of PCIe 4.0 storage, and a 44.24 Wh battery is also present.

AMD Ryzen AI Max 395+ Mini PC: GMK Announces Strix Halo-Powered Compact System

At CES, AMD unleashed the much awaited Ryzen AI Max "Strix Halo" APUs with mammoth iGPUs, up to a whopping 40 CUs for the Radeon 8060S. These chips are powerful enough to not require discrete graphics at all, making them ideal for mini PCs, which lack the physical room for dedicated graphics. GMK appears to be among the first to announce a mini PC with the top-end Ryzen AI Max+ 395 APU, although any further details are under wraps as of now.

Unlike the Strix Point parts, Strix Halo abandons the smaller and more efficient Zen 5c cores for a Zen 5-only setup, with up to 16 Zen 5 cores for the highest-end Ryzen AI Max+ 395 SKU. This allows for some serious performance potential, with AMD promising substantially better performance than both Intel's Lunar Lake and Apple's M4 Pro, although it would be much fairer to compare Strix Halo to Apple's M4 Max, and Intel's Arrow Lake-H/X instead. Regardless, there is no denying Strix Halo APUs open up new doors in terms of performance for compact systems, the rest remains to be seen as and when the products reach reviewers.

ZOTAC Shows New ZONE GAMING Handheld Prototype with AMD Ryzen AI 9 HX 370 at CES 2025

We had a chance to get close and personal with the new ZOTAC ZONE GAMING prototype at the CES 2025 show. While it is not a final product, we had a chance to see it in action as it is a working prototype and thanks to updated hardware, it should provide much higher performance compared to the ZOTAC Zone that we had a chance to review last year.

The biggest update is the 4 nm Ryzen AI 9 HX 370 processor. The Strix Point architecture brings 12-core/24-thread CPU (four performance and eight efficiency) based on Zen 5 architecture, 24 MB of shared L3 cache and 1 MB of L2 cache per core. It also comes with Radeon 890M, a RDNA 3.5 architecture GPU with 16 Compute Units. ZOTAC also increased the amount of LPDDR5X RAM to 32 GB and raised M.2 2280 PCIe 4.0 SSD storage space to 1 TB. The Ryzen AI 9 HX 370 has a standard TDP of 28 W, and a configurable TDP between 15 W and 54 W, so it gives ZOTAC a lot of room to work with. It also features 50 TOPS XDNA NPU.

AMD Expands Copilot+ Capable Ryzen AI 300 Series, Debuts Ryzen 200 Series Mainstream Mobile Processors

AMD today vastly fleshed out its mobile processor lineup with the introduction of two new processor lines besides the Ryzen AI Max 300 series. This includes the introduction of more processor models in the Ryzen AI 300 series that are powered by the "Strix Point" silicon, and the introduction of the Ryzen 200 series mobile processors, which are based on the older "Hawk Point" silicon. In 2024, AMD had debuted the Ryzen AI 300 series "Strix Point," but with just the top-end Ryzen AI 9 370 and 365, which came with maxed out 12-core/24-thread (4x Zen 5 + 8x Zen 5c) core configuration, and a maxed out iGPU with 16 CU. Today the company is introducing the Ryzen AI 7 350, the Ryzen AI 5 340, and their AMD PRO variants for commercial notebooks. Both the consumer and commercial parts have identical specs, except for the latter featuring the AMD PRO feature-set.

The Ryzen AI 7 350 comes with a CPU configuration of 8-core/16-thread (4x Zen 5 + 4x Zen 5c). All cores have a base frequency of 2.00 GHz, the Zen 5 cores boost up to 5.00 GHz. The iGPU on offer is the Radeon 860M, with 12 CU and an engine clock of up to 3.00 GHz. TDP is configurable between 15 W to 55 W. The Ryzen AI 5 340 comes with a 6-core/12-thread configuration (3x Zen 5 + 3x Zen 5c), and CPU clock speeds of 2.00 GHz base with 4.80 GHz boost achievable on the Zen 5 cores. The iGPU is heavily cut down, with just 4 CU available, and an iGPU engine clock of 2.90 GHz. Notebook designers can configure this chip with a wide power range from 15 W to 55 W. All four processor models mentioned above come with a Ryzen AI XDNA 2 NPU that's capable of 50 AI TOPS, which means they're all Microsoft Copilot+ AI PC logo eligible.

AMD Announces the Ryzen Z2 Line of SoCs for Gaming Handhelds

AMD at the 2025 International CES unveiled the Ryzen Z2 line of SoCs for gaming handhelds that combine an x86-64 based SoC with a customized version of Windows 11. This market segment is poised to heat up with the entry of the Intel Core Ultra 200V "Lunar Lake" processor, and so AMD is responding with its latest IP. The Ryzen Z2 series is based on the 4 nm "Strix Point" silicon, which combines "Zen 5" and "Zen 5c" CPU cores with a fairly large iGPU based on the new RDNA 3.5 graphics architecture that's optimized for LPDDR5X memory. AMD's engineering effort focused on modest CPU performance gains over the Ryzen Z1 "Phoenix Point," but significant graphics performance gains. The NPU is disabled on all models.

The "Strix Point" silicon physically features two CCX, one with four "Zen 5" cores sharing a 16 MB L3 cache, and the other with eight "Zen 5c" cores sharing an 8 MB L3 cache. The iGPU of "Strix Point" is based on RDNA 3.5, and comes with 16 CU (compute units), a step up from the 12 CU of "Phoenix Point." The series is led by the Ryzen Z2 Extreme, which features an 8-core/16-thread CPU configuration that probably consists of four "Zen 5" cores, four "Zen 5c" cores, and a maxed out iGPU with 16 CU. The chip has a cTDP range of 15 W to 35 W. The "Zen 5" cores boost up to 5.00 GHz.

AMD Strix Halo Radeon 8050S and 8060S iGPU Performance Look Promising - And Confusing

AMD fans are undoubtedly on their toes to witness the performance improvements that Strix Halo is ready to bring forth. Unlike Strix Point, which utilizes a combination of Zen 5c and full-fat Zen 5 cores, Strix Halo will do away with the small cores for a Zen 5 "only" setup, allowing for substantially better multicore performance. Moreover, it is also widely expected that Strix Halo will boast chunky iGPUs that will bring the heat to entry-level and even some mid-range mobile GPUs, allowing Strix Halo systems to not require discrete graphics at all, with a prime example being the upcoming ROG Flow Z13 tablet.

As per recent reports, the upcoming Ryzen AI Max+ Pro 395 APU will sport an RDNA 3.5-based iGPU with a whopping 40 CUs, and will likely be branded as the Radeon 8060S. In a leaked Geekbench Vulkan benchmark, the Radeon 8060S managed to outpace the RTX 4060 Laptop dGPU in performance. However, according to yet another leaked benchmark, Passmark, the Radeon 8060S and the 32-CU 8050S scored 16,454 and 16,663 respectively - and no, that is not a typo. The 8060S with 40 CUs is marginally slower than the 8050S with 32 CUs, clearly indicating that the numbers are far from final. That said, performance in this range puts the Strix Halo APUs well below the RTX 4070 laptop GPU, and roughly the same as the RTX 3080 Laptop. Not bad for an iGPU, although it is almost certain that actual performance of the retail units will be higher, judging by the abnormally small delta between the 8050S and the 8060S.

Ryzen AI 9 HX 370-powered GMKTec EVO X1 Mini PC Goes on Sale

AMD's recently announced Strix Point APU lineup has received favorable reviews from critics and consumers alike. Especially for SFF/Mini PC enthusiasts, Strix Point brings commendable efficiency and performance to the table - both of which are absolutely essential for a high-end mini PC. The GMK EVO-X1 is surely among those, and the system is now available for purchase from GMKTec's official online store.

The EVO X1 sports a 110.19 x 107.3 x 63.2 mm chassis, which is decently compact for its class. As mentioned previously, the system is powered by the 12-core (4x Zen 5 + 8x Zen 5c) Ryzen AI 9 HX 370 APU with the shockingly potent RDNA 3.5-based Radeon 890M iGPU with 16 CUs. For most CPU-centric workloads, the EVO X1 should easily suffice. The iGPU, as mentioned, is potent enough to handle most graphically demanding tasks, including some lightweight gaming, but expecting anything more from it would be futile. Thankfully, an OCuLink port is present, which should allow for extremely fast eGPU connections courtesy of its 64 Gbps bandwidth.

OneXPlayer G1 Gaming Laptop Unveiled With Compact Enclosure and Strix Point Firepower

OneXPlayer has pulled back the veil on its G1 gaming notebook, and the product sure does look intriguing. Calling it a notebook might not even be fair, considering that its 8.8-inch display barely exceeds tablet territory. However, for lovers of compact gaming systems and handhelds, the G1 looks like it ticks many boxes, and its detachable keyboard is undoubtedly a welcome addition.

The system is powered by AMD's 12-core Ryzen AI 9 HX 370 "Strix Point" APU with 4 Zen 5 and 8 Zen 5c cores, along with a powerful Radeon 890M iGPU with 16 CUs based on the RDNA 3.5 architecture. The aforementioned 8.8-inch display is quite the looker as well, featuring a 2.5K resolution with a speedy 144 Hz refresh rate. At least on paper, it appears that the OneXPlayer G1 leaves very little room for complaint.

Upcoming Mini PC From Aoostar With Ryzen AI 9 HX 370 "Strix Point" APU Teased

AMD's recently launched Strix Point lineup of high-end APUs boast truly impressive performance, even when configured with lower TDPs. As time goes on, more and more hardware brands are hitting the market with Strix Point-powered devices, and unsurprisingly, Aoostar does not wish to sit on the sidelines either.

The company has teased a yet-to-be announced mini PC, with Strix Point at its heart. Powered by the powerful Ryzen AI 9 HX 370 APU, the system will likely offer excellent performance, considering that Aoostar refuses to skimp on its cooling system. Thankfully, that does seem to be case, since Aoostar claims the upcoming mini PC will boast a vapor chamber cooling setup allowing the HX 370 to run at its maximum of 54 watts. For those out of the loop, here is a rundown of the HX 370's specifications: 12-core setup with 8 Zen 5c cores and 4 Zen 5 cores, Radeon 890M iGPU based on RDNA 3+, and a 50 TOPS XDNA 2 NPU to justify the "AI" branding.

GPD Win Max 2 Scores Strix Point Update Along With a Price Bump

GPD recently updated its Win 4 gaming handheld with Strix Point APUs, and has now seemingly turned its attention to the Win Max 2. The system is available on Indiegogo, with an estimated shipping time set for sometime this December. The Strix Point update will not only bring improved performance to the table, but also enhance overall energy efficiency, which is crucial for such compact form factors.

The Win Max 2 is now available with AMD's latest Ryzen AI 9 HX 370 APU "Strix Point" APU, although a "Hawk Point" variant with a Ryzen 7 8840U is also available. The Strix Point APU outperforms the Hawk Point APU in almost every possible way, with the 12-core HX 370 pulling ahead of the 8-core 8840U by almost 45% in multithreaded benchmarks. In graphics performance, the story is much the same, with the Radeon 890M iGPU leading the 780M by almost 25% in synthetic benchmarks.

AYANEO 3 Handheld Unveiled with Hawk Point, Strix Point APUs and Optional OLED Display

AYANEO has officially revealed its latest handheld gaming console, dubbed the AYANEO 3. The company has teased the handheld multiple times in the past, while refraining from sharing any specifications regarding the same. Now, however, the company has detailed the internals for its new flagship handheld along with a few extra details.

The AYANEO 3 appears to be powered exclusively by AMD APUs, with Intel's Lunar Lake options nowhere to be found. Interested buyers will get to choose between either the Ryzen AI 9 HX 370 "Strix Point" APU, or the Ryzen 7 8840U "Hawk Point" APU. The "Strix Point" option happens to be AMD's latest and greatest, packing 4 Zen 5 and 8 Zen 5c cores, while the "Hawk Point" option sports 8 Zen 4 cores only.

AMD Ryzen AI MAX 300 "Strix Halo" iGPU to Feature Radeon 8000S Branding

AMD Ryzen AI MAX 300-series processors, codenamed "Strix Halo," have been on in the news for close to a year now. These mobile processors combine "Zen 5" CPU cores with an oversized iGPU that offers performance rivaling discrete GPUs, with the idea behind these chips being to rival the Apple M3 Pro and M3 Max processors powering MacBook Pros. The "Strix Halo" mobile processor is an MCM that combines one or two "Zen 5" CCDs (some ones featured on "Granite Ridge" desktop processors and "Turin" server processors), with a large SoC die. This die is built either on the 5 nm (TSMC N5) or 4 nm (TSMC N4P) node. It packs a large iGPU based on the RDNA 3.5 graphics architecture, with 40 compute units (CU), and a 50 TOPS-class XDNA 2 NPU carried over from "Strix Point." The memory interface is a 256-bit wide LPDDR5X-8000 for sufficient memory bandwidth for the up to 16 "Zen 5" CPU cores, the 50 TOPS NPU, and the large 40 CU iGPU.

Golden Pig Upgrade leaked what looks like a company slide from a notebook OEM, which reveals the iGPU model names for the various Ryzen AI MAX 300-series SKUs. Leading the pack is the Ryzen AI MAX+ 395. This is a maxed out SKU with a 16-core/32-thread "Zen 5" CPU that uses two CCDs. All 16 cores are full-sized "Zen 5." The CPU has 64 MB of L3 cache (32 MB per CCD), each of the 16 cores has 1 MB of dedicated L2 cache. The iGPU is branded Radeon 8060S, it comes with all 40 CU (2,560 stream processors) enabled, besides 80 AI accelerators, and 40 Ray accelerators. The Ryzen AI MAX 390 is the next processor SKU, it comes with a 12-core/24-thread "Zen 5" CPU. Like the 395, the 390 is a dual-CCD processor, all 12 cores are full-sized "Zen 5." There's 64 MB of L3 cache, and 1 MB of L2 cache per core. The Radeon 8060S graphics solution is the same as the one on the Ryzen AI MAX+ 395, it comes with all 40 CU enabled.

AMD Quietly Bumps up Ryzen AI 300 "Strix Point" Specs to Support LPDDR5X-8000

A new ultraportable notebook model powered by the AMD Ryzen AI 300 series "Strix Point" processor coming this December, will feature LPDDR5X-8000 memory, a memory speed above the LPDDR5-7500 that was standard for the processor. Hoang Anh Phu did some digging, and found that AMD has quietly updated the product pages of these processors on its website, now showing support for LPDDR5X-8000. Older versions of these pages accessed by The Wayback Machine showed them to mention 7500 MT/s as the top speed for LPDDR5X.

While regular DDR5 SO-DIMM speeds remain unchanged at dual-channel DDR5-5600, it's pertinent to note that mainstream and enthusiast-segment gaming notebooks tend to use faster DDR5 SO-DIMMs than spec using OEM-level memory overclocking, however, LPDDR5X speeds do not tend to be higher than what the processor is capable of. An OEM would only use LPDDR5X-8000 chips if the processor officially supports it, which it now does with this stealthy specs update. The notebook in question is an HP EliteBook X G1a, a 14-inch premium ultraportable that not just uses LPDDR5X-8000 with "Strix Point" processors, but also seems to have overclocked its NPU. By AMD's specs, the XDNA 2 NPU should be capable of 50 TOPS, but HP has stepped its performance up by 10%.

AMD Ryzen Z2 Extreme to Feature a 3+5 Core Configuration

The second generation of AMD Ryzen Z-series processors for handheld gaming consoles, will be led by the Ryzen Z2 Extreme. There will also be an affordable Ryzen Z2 (non-Extreme). We've known for some time that the Z2 Extreme is based on the 4 nm "Strix Point" monolithic silicon, with some optimization (the highest bins to facilitate the best energy efficiency); but now we have a few more details thanks to a leak by Golden Pig Upgrade. AMD's engineering effort with the Z2 Extreme will be to give the console the most generational performance uplift from the iGPU, rather than the CPU.

The "Strix Point" silicon features a significantly updated iGPU from the previous-generation "Phoenix." It's based on the more efficient RDNA 3.5 graphics architecture, which is better optimized for LPDDR5 memory; and comes with 16 compute units (CU), compared to 12 on the "Phoenix." The Ryzen Z2 Extreme will come with all 16 CU enabled. The CPU is where some interesting changes are planned. The "Strix Point" silicon features a dual-CCX CPU, one of these contains four "Zen 5" CPU cores sharing a 16 MB L3 cache, while the other features eight "Zen 5c" cores sharing an 8 MB L3 cache. For the Ryzen Z2 Extreme, AMD is going with an odd 3+5 core configuration. What this means is that the Ryzen Z2 Extreme will have 3 "Zen 5" cores, and 5 "Zen 5c" cores. The L3 cache on the CCX with "Zen 5" cores has been reduced to 8 MB in size. On paper, this is still an 8-core/16-thread CPU with 16 MB of L3 cache (same as "Phoenix,") but now you know that there's more going on.

AMD Unveils Ryzen AI HX 300 Support for AFMF 2, VGM, and Releases a Preview Driver

AMD today released early driver support for the Radeon 800M series integrated graphics of Ryzen AI 300 series mobile processors to use AMD Fluid Motion Frames 2 (AFMF 2), and Variable Graphics Memory (VGM) technologies. The two technologies receive optimization for the RDNA 3.5 graphics architecture driving the iGPU of the "Strix Point" silicon on which the Ryzen AI 300 series processors are based on. AFMF 2 is the second generation of AMD Fluid Motion Frames, a technology that lets you nearly double frame-rates on any Direct3D 11 or later game, without the gaming having explicit support for a frame generation technology, such as FSR 3 Frame Generation. AFMF operates out of the game's graphics pipeline, which adds a tiny bit of system latency. AFMF 2 seeks to reduce this latency.

Variable Graphics Memory (VGM) is another interesting feature that builds on top of the UMA (unified memory architecture) implementation of AMD processors with iGPUs. Depending on a 3D application's demands, the technology dynamically allocates up to 75% of the system memory as video memory for the iGPU, while ensuring the game doesn't run into unintentional performance bottlenecks arising from paging main memory if too much of it is used up by the iGPU. For VGM to work, a system needs at least 16 GB of main memory. VGM is not meant to be confused with the shared memory area that the processor allots to the iGPU by default (which ranges between 512 MB and 2 GB), it's designed to augment to this by eating into the system memory.

AMD Readies Ryzen Z2 Chip for Handhelds Based on "Strix Point" Silicon

AMD is readying a major update to its category-defining Ryzen Z-series SoCs, with the new Ryzen Z2. Designed for handheld game consoles, the Ryzen Z-series chips are typically power-optimized variants of its mobile processors designed for ultra-low board footprint, allowing PC OEMs to build handheld game consoles with them. Facing competition from Intel's upcoming Core Ultra 200V "Lunar Lake-MX" SoCs in this segment, AMD is readying the Ryzen Z2 chip. The Z2 is based on the 4 nm "Strix Point" silicon, which gives it a significantly updated iGPU, as well as a higher core-count CPU.

Perhaps the biggest sub-system performance uplift console designers can expect from the Ryzen Z2 is graphics—AMD has given the "Strix Point" a larger iGPU with 16 compute units in place of 12 on "Phoenix," which is a 33% increase in just numerical terms. Then there's also the update to the newer RDNA 3.5 graphics architecture, which incorporates several architecture-level performance and battery-efficiency improvements. It's also better optimized for LPDDR5 memory. With CPU, AMD has given "Strix Point" a heterogeneous multicore setup with four "Zen 5" and eight "Zen 5c" cores. At this point, we don't know if all 12 cores are enabled on the Z2. ASUS is designing its next generation of ROG Ally consoles powered by the Ryzen Z2, and its designers hint that the console should be able to offer over 1 hour of "Black Myth: Wukong" gameplay on a full charge of battery—something current-gen ROG Ally X powered by the Z1 doesn't.

TechPowerUp Releases GPU-Z v2.60.0

TechPowerUp has released version 2.60.0 of GPU-Z, a popular graphics sub-system information, monitoring, and diagnostic utility. This latest update brings significant enhancements, including full support for the Arm64 architecture and Qualcomm Snapdragon X Elite GPUs. The release also adds support for AMD Zen 5 CPU temperature monitoring and a wide range of new GPUs from NVIDIA, AMD, and Intel. Notable additions include the NVIDIA 4070 Ti Super (AD102), RTX 4070 (AD103), RTX 4060 Ti (AD104), RTX 4060 (AD106), as well as AMD Zen 5 (Strix Point and Granite Ridge), and Intel Raptor Lake U SKUs and Meteor Lake Intel Arc Graphics.

In addition to expanded hardware support, GPU-Z 2.60.0 addresses several important issues. The update fixes NVIDIA driver version reporting for some pre-2015 versions, resolves an installer problem that prevented closing running instances of GPU-Z, and corrects the "0 MHz" memory clock display on certain AMD RDNA GPUs without overclocking support. Other improvements include a small handle leak fix, added support for the Monster Notebook subvendor ID, and compatibility with new VMWare virtual GPU IDs. The installer now requires Windows 7 or newer, with appropriate messaging for unsupported systems. Users can download the latest version of TechPowerUp GPU-Z from the official TechPowerUp website to access these new features and improvements.

DOWNLOAD: TechPowerUp GPU-Z 2.60.0

AMD Strix Point Silicon Pictured and Annotated

The first die shot of AMD's new 4 nm "Strix Point" mobile processor surfaced, thanks to an enthusiast on Chinese social media. "Strix Point" is a significantly larger die than "Phoenix." It measures 12.06 mm x 18.71 mm (L x W), compared to the 9.06 mm x 15.01 mm of "Phoenix." Much of this die size increase comes from the larger CPU, iGPU, and NPU. The process has been improved from TSMC N4 on "Phoenix" and its derivative "Hawk Point," to the newer TSMC N4P node.

Nemez (GPUsAreMagic) annotated the die shot in great detail. The CPU now has 12 cores spread across two CCX, one of which contains four "Zen 5" cores sharing a 16 MB L3 cache; and the other with eight "Zen 5c" cores sharing an 8 MB L3 cache. The two CCXs connect to the rest of the chip over Infinity Fabric. The rather large iGPU takes up the central region of the die. It is based on the RDNA 3.5 graphics architecture, and features 8 workgroup processors (WGPs), or 16 compute units (CU) worth 1,024 stream processors. Other key components include four render backends worth 16 ROPs, and control logic. The GPU has its own 2 MB of L2 cache that cushions transfers to the Infinity Fabric.

AMD Ryzen "Fire Range" Mobile Processor Retains FL1 Package

AMD is readying a successor to its Ryzen 7045 series "Dragon Range" mobile processor for gaming notebooks and portable workstations. While we don't know its processor model naming yet, the chip is codenamed "Fire Range." We are learning that it will retain the FL1 package as "Dragon Range," which means it will be pin-compatible. This would significantly reduce development costs for notebook OEMs, as they can simply carry over their mainboard designs from their notebooks based on "Dragon Range."

"Fire Range" is essentially a mobile BGA version of the upcoming Ryzen 9000 "Granite Ridge" desktop processor. The FL1 package measures 40 mm x 40 mm in size, and has substrate for two CCDs and a cIOD, just like the desktop chip. "Fire Range" hence features one or two 4 nm "Zen 5" CCDs, depending on the processor model, and the 6 nm client I/O die. Much like "Dragon Range," the "Fire Range" chip will lack support for LPDDR5, and rely on conventional PC DDR5 memory in the SO-DIMM or CAMM2 form-factors. Besides the CPU core count consisting exclusively of full-sized "Zen 5" cores, the main flex for "Fire Range" over "Strix Point" will be its 28-lane PCIe Gen 5 root-complex, which can wire out the fastest discrete mobile GPUs, as well as drive multiple M.2 NVMe slots with Gen 5 wiring, and other high-bandwidth devices, such as Thunderbolt 4, USB4, or Wi-Fi 7 controllers wired directly to the processor.

AMD Strix Point SoC Reintroduces Dual-CCX CPU, Other Interesting Silicon Details Revealed

Since its reveal last week, we got a slightly more technical deep-dive from AMD on its two upcoming processors—the "Strix Point" silicon powering its Ryzen AI 300 series mobile processors; and the "Granite Ridge" chiplet MCM powering its Ryzen 9000 desktop processors. We present a closer look into the "Strix Point" SoC in this article. It turns out that "Strix Point" takes a significantly different approach to heterogeneous multicore than "Phoenix 2." AMD gave us a close look at how this works. AMD built the "Strix Point" monolithic silicon on the TSMC N4P foundry node, with a die-area of around 232 mm².

The "Strix Point" silicon sees the company's Infinity Fabric interconnect as its omnipresent ether. This is a point-to-point interconnect, unlike the ringbus on some Intel processors. The main compute machinery on the "Strix Point" SoC are its two CPU compute complexes (CCX), each with a 32b (read)/16b (write) per cycle data-path to the fabric. The concept of CCX makes a comeback with "Strix Point" after nearly two generations of "Zen." The first CCX contains the chip's four full-sized "Zen 5" CPU cores, which share a 16 MB L3 cache among themselves. The second CCX contains the chip's eight "Zen 5c" cores that share a smaller 8 MB L3 cache. Each of the 12 cores has a 1 MB dedicated L2 cache.

AMD Strix Point SoC "Zen 5" and "Zen 5c" CPU Cores Have 256-bit FPU Datapaths

AMD in its architecture deep-dive Q&A session with the press, confirmed that the "Zen 5" and "Zen 5c" cores on the "Strix Point" silicon only feature 256-bit wide FPU data-paths, unlike the "Zen 5" cores in the "Granite Ridge" Ryzen 9000 desktop processors. "The Zen 5c used in Strix has a 256-bit data-path, and so does the Zen 5 used inside of Strix," said Mike Clark, AMD corporate fellow and chief architecture of the "Zen" CPU cores. "So there's no delta as you move back and forth [thread migration between the Zen 5 and Zen 5c complexes] in vector throughput," he added.

It doesn't seem like AMD disabled a physically available feature, but rather, the company developed a variant of both the "Zen 5" and "Zen 5c" cores that physically lack the 512-bit data-paths. "And you get the area advantage to be able to scale out a little bit more," Clark continued. This suggests that the "Zen 5" and "Zen 5c" cores on "Strix Point" are physically smaller than the ones on the 4 nm "Eldora" 8-core CCD that is featured in "Granite Ridge" and some of the key models of the upcoming 5th Gen EPYC "Turin" server processors.

AMD Details the Radeon 890M RDNA 3.5 iGPU of "Strix Point" a bit More

AMD presented a closer look at the Radeon 890M iGPU powering the Ryzen AI 300 series "Strix Point" mobile processor. The iGPU introduces the new RDNA 3.5 graphics architecture, with several architecture-level improvements built around the existing RDNA 3 SIMD, to yield performance/Watt improvements that AMD could trade in to increase the SIMD muscle for its processors, and proportionately increase performance. The iGPU features one Shader Engine with 8 workgroup processors (WGPs), which amount to 16 CU (compute units), for a total of 1,024 stream processors, 32 AI accelerators, and 16 Ray accelerators. The iGPU also has 4 render backends+, for 16 ROPs. It is specced with a maximum engine clock of 2.90 GHz, which yields over 11 TFLOP/s of FP32 throughput, which is around 30% higher than the iGPU of "Phoenix" (12 CU, RDNA 3), at comparable power.

AMD goes into the finer points of how it yielded the performance/Watt gains. The company worked on the texture subsystem to double the texture sampler rate, and introduced point-sampling acceleration. The shader sub-system features interpolation and comparison rate doubling. The raster sub-system introduces sub-batching of batch raster operations, with a programmable bin order, for the hardware to be more efficient. Lastly, AMD worked on the iGPU's memory-management, to be more aware of LPDDR5 (which has a different physical layer or way of writing/fetching than GDDR6). The company worked on improving the memory compression technologies, to improve performance, and reduce the iGPU's memory footprint.

AMD "Strix Halo" Processor Boosts up to 5.35 GHz, Geekbenched

AMD's upcoming "Strix Halo" mobile processor that features up to 16 "Zen 5" CPU cores and a powerful iGPU with 40 compute units, is beginning to surface in online benchmark databases. We've gone into the juicy technical bits about the processor in our older articles, but put simply, it is a powerful mobile processor meant to square off against the likes of the Apple M3 Pro and M3 Max. A chiplet-based processor, much like the upcoming "Granite Ridge" desktop processor and "Fire Range" mobile processor, "Strix Halo" features up to 16 full-sized "Zen 5" cores, as it uses up to two of the same "Eldora" CCDs as them; but wired to a large I/O die that contains the oversized iGPU, and an NPU, besides the memory controllers. The iGPU has 40 compute units (2,560 stream processors), and is based on the RDNA 3.5 graphics architecture, while the NPU is the same 50 TOPS-class unit carried over from "Strix Point."

A prototype HP laptop powered by a "Strix Halo" processor that uses a single 8-core "Zen 5" CCD, was spied on the web. This chip has eight full-sized "Zen 5" cores that share a 32 MB L3 cache. The iGPU on the I/O die has its own 32 MB Infinity Cache memory that cushions memory transfers. In our older reports, we speculated as to what the memory interface of "Strix Halo" would be. It turns out that the chip exclusively features a 256-bit wide LPDDR5X memory interface, which is double the bus width of "Strix Point." This is essentially what a "quad-channel DDR5" memory interface would be, and AMD is using a memory speed standard of at least LPDDR5X-8000. From the machine's point of view, this would be just a couple of hardwired LPDDR5X chips, or a pair of LPCAMM 2 modules. Back to the benchmarks, and we are shown a single-thread CPU score of 2099 to 2177 points, and a multithreaded score ranging between 5477 points to 13993 points. The laptop was tested with an unknown version and distribution of Linux. The CPU cores are shown boosting up to 5.35 GHz.

AMD Granite Ridge and Strix Point Zen 5 Die-sizes and Transistor Counts Confirmed

AMD is about give the new "Zen 5" microarchitecture a near-simultaneous launch across both its client segments—desktop and mobile. The desktop front is held by the Ryzen 9000 "Granite Ridge" Socket AM5 processors; while Ryzen AI 300 "Strix Point" powers the company's crucial effort to capture Microsoft Copilot+ AI PC market share. We recently did a technical deep-dive on the two. HardwareLuxx.de scored two important bits of specs for both processors in its Q&A interaction with AMD—die sizes and transistor counts.

To begin with, "Strix Point" is a monolithic silicon, which is confirmed to be built on the TSMC N4P foundry node (4 nm). This is a slight upgrade over the N4 node that the company built its previous generation "Phoenix" and "Hawk Point" processors on. The "Strix Point" silicon measures 232.5 mm² in area, which is significantly larger than the 178 mm² of "Hawk Point" and "Phoenix." The added die area comes from there being 12 CPU cores instead of 8, and 16 iGPU compute units instead of 12; and a larger NPU. There are many other factors, such as the larger 24 MB CPU L3 cache; and the sizes of the "Zen 5" and "Zen 5c" cores themselves.
Return to Keyword Browsing
Jan 20th, 2025 17:37 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts