Thermal Throttling
Due to the compact form factor, M.2 drives lack the ability to cool themselves and usually have to rely on passive airflow instead. All vendors include some form of thermal throttling on their drives as a safeguard, which limits throughput once a certain temperature is exceeded.
On this page, we will investigate whether the tested drive has such a mechanism, how high temperatures get, and what effect this has on performance. We will test the drive in a typical case and the M.2 slot between the CPU and VGA card. A second data point shows the result with a 120 mm fan directly blowing on the tested drive. Each of the charts has time moving from left to right, with the blue line displaying transfer speed in MB/s and the red line showing the temperature in °C (measured using SMART).
Results from this test setup are
not comparable to our 2019 SSD bench because we're using a different case and a CPU cooler that generates some airflow around the CPU socket.
Reads
Writes
Some interesting patterns here. These are not due to thermal throttling because they happen to the drive with a fan blowing onto it, too. I reached out to Corsair for more information, but haven't heard back from them.
Thermal Image & Hot Spot
We recorded a thermal image of the running SSD as it was completing the write test. The hottest part reached 81°C, which is around 15°C higher than the drive's own thermal reporting.