Sharkoon Light² S Review 1

Sharkoon Light² S Review

Software & Lighting »

Sensor and Performance

The Sharkoon Light² S is equipped with the PixArt PAW3327. According to specifications, the 3327 is capable of up to 6200 CPI, as well as a maximum tracking speed of 220 IPS, which equals 5.59 m/s. Out of the box, five pre-defined CPI steps are available: 600, 1800, 3000, 4200, and 6200.

CPI Accuracy

"CPI" (short for counts per inch) describes the number of counts registered by the mouse if it is moved exactly an inch. There are several factors (firmware, mounting height of the sensor not meeting specifications, mouse feet thickness, mousing surface, among others) which may contribute to nominal CPI not matching actual CPI. It is impossible to always achieve a perfect match, but ideally, nominal and actual CPI should differ as little as possible. In this test, I'm determining whether this is the case or not. However, please keep in mind that said variance will still differ from unit to unit, so your mileage may vary.


I've restricted my testing to the four most common CPI steps, which are 400, 800, 1600, and 3200. As you can see, deviation is as massive as it is inconsistent, which is a poor result overall. In order to account for the measured deviation, adjusted but still inaccurate steps of 300, 700, 1400, and 2800 CPI have been used for testing.

Motion Delay

"Motion delay" encompasses all kinds of sensor lag. Any further sources of input delay will not be recorded in this test. The main thing I'll be looking for in this test is sensor smoothing, which describes an averaging of motion data across several capture frames in order to reduce jitter at higher CPI values, increasing motion delay along with it. The goal here is to have as little smoothing as possible. As there is no way to accurately measure motion delay absolutely, it can only be done by comparison with a control subject that has been determined to have the lowest possible motion delay. In this case, the control subject is a G403, whose 3366 has no visible smoothing across the entire CPI range. Note that the G403 is moved first and thus receives a slight head start.


First, I'm looking at two xCounts plots—generated at 1600 and 6200 CPI—to quickly gauge whether there is any smoothing, which would be indicated by any visible "kinks." As you can see, no kinks are visible, which is due to the 3327 not having fixed framerate levels, which has no framerate transitions show up in these plots. What we can see, however, is clean tracking with low SPI timing jitter.


In order to determine motion delay, I'm looking at xSum plots generated at 1600, 3200, and 6200 CPI. The line further to the left denotes the sensor with less motion delay. At 1600 CPI, the motion delay differential is roughly 1 ms. At 3200 CPI, a motion delay differential of roughly 2 ms can be seen, while 6200 CPI shows a differential of 3 ms. It seems that minor smoothing kicks in at some point, though I haven't been able to determine the transition points.


What people typically mean when they talk about "acceleration" is speed-related accuracy variance (or short SRAV). It's not about the mouse having a set amount of inherent positive or negative acceleration, but about the cursor not traveling the same distance if the mouse is moved the same physical distance at different speeds. The easiest way to test this is by comparison with a control subject that is known to have very low SRAV, which in this case is the G403. As you can see from the plot, no displacement between the two cursor paths can be observed, which confirms that SRAV is very low.

Perfect Control Speed


Perfect Control Speed (or PCS for short) is the maximum speed up to which the mouse and its sensor can be moved without the sensor malfunctioning in any way. I've only managed to hit a measly 4 m/s (which is within the proclaimed PCS range), at which no sign of the sensor malfunctioning can be observed.

Polling Rate Stability


All four available polling rates (125 Hz, 250 Hz, 500 Hz, and 1000 Hz) look nice and stable. Polling stability is unaffected by any RGB setting.

Paint Test


This test is used to indicate any potential issues with angle snapping (non-native straightening of linear motion) and jitter, along with any sensor lens rattle. As you can see, no issues with angle snapping can be observed. No jitter is visible at 1600 and 3200 CPI. Even 6200 CPI is still well-controlled. Lastly, the sensor lens is completely loose.

Lift-off Distance

The Light² S does not offer any LOD adjustment options. The sensor does track at a height of 1 DVD, but not at a height of 2 DVDs (1.2<x<2.4 mm; x=LOD height). Keep in mind that LOD may vary slightly depending on the mousing surface (pad) it is being used on.

Click Latency


Since mechanical switches are being used for the buttons in most computer mice, debouncing is required in order to avoid unintended double clicks. Debouncing typically adds a delay (along with any potential processing delay), which shall be referred to as click latency. As there is no way to measure said delay directly, it has to be done by comparing it to a control subject, which in this case is the Logitech G100s. Click latency has been measured to be roughly +5.9 ms when compared to the SteelSeries Ikari, which is considered as the baseline with 0 ms. Please keep in mind that the measured value is not the absolute click latency. Comparison data comes from this thread as well as my own testing, using qsxcv's program.
Next Page »Software & Lighting
View as single page
Jan 15th, 2025 12:41 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts