Monday, December 23rd 2024
AMD's Pain Point is ROCm Software, NVIDIA's CUDA Software is Still Superior for AI Development: Report
The battle of AI acceleration in the data center is, as most readers are aware, insanely competitive, with NVIDIA offering a top-tier software stack. However, AMD has tried in recent years to capture a part of the revenue that hyperscalers and OEMs are willing to spend with its Instinct MI300X accelerator lineup for AI and HPC. Despite having decent hardware, the company is not close to bridging the gap software-wise with its competitor, NVIDIA. According to the latest report from SemiAnalysis, a research and consultancy firm, they have run a five-month experiment using Instinct MI300X for training and benchmark runs. And the findings were surprising: even with better hardware, AMD's software stack, including ROCm, has massively degraded AMD's performance.
"When comparing NVIDIA's GPUs to AMD's MI300X, we found that the potential on paper advantage of the MI300X was not realized due to a lack within AMD public release software stack and the lack of testing from AMD," noted SemiAnalysis, breaking down arguments in the report further, adding that "AMD's software experience is riddled with bugs rendering out of the box training with AMD is impossible. We were hopeful that AMD could emerge as a strong competitor to NVIDIA in training workloads, but, as of today, this is unfortunately not the case. The CUDA moat has yet to be crossed by AMD due to AMD's weaker-than-expected software Quality Assurance (QA) culture and its challenging out-of-the-box experience."NVIDIA has a massive advantage in that the software is fully functional. "As fast as AMD tries to fill in the CUDA moat, NVIDIA engineers are working overtime to deepen said moat with new features, libraries, and performance updates," noted the SemiAnalysis report. Tinybox and Tinybox Pro developer Tinygrad also confirmed this multiple times on their X profile, which also had a massive issue with AMD software in the past.
When taking a look at AMD Instinct MI300X and NVIDIA H100/H200 chips from 2023, the MI300X emerges as a clear winner performance-wise. It reaches 1,307 TFLOP/s for FP16 calculations, surpassing NVIDIA's H100, which delivers 989 TFLOP/s. The MI300X has 192 GB of HBM3 memory and a memory bandwidth of 5.3 TB/s. These specifications are even favourable to NVIDIA's H200, which offers 141 GB of HBM3e memory and 4.8 TB/s of memory bandwidth. The AMD chip also even has a lower total cost of ownership model, which has a 40% cheaper networking alone. On paper, the AMD chip looks superior to NVIDIA's Hopper offerings, but in reality, not so much.
AMD's internal teams have little access to GPU boxes to develop and refine the ROCm software stack. Tensorwave, which is among the largest providers of AMD GPUs in the cloud, took their own GPU boxes and gave AMD engineers the hardware on demand, free of charge, just so the software could be fixed. This is all while Tensorwave paid for AMD GPUs, renting their own GPUs back to AMD free of charge. Finally, SemiAnalysis has noted that the AMD software stack has been improved based on their suggestions. Still, there is a long way to go before the company reaches NVIDIA's CUDA level of stability and performance. For detailed analysis, visit SemiAnalysis report here.
Source:
SemiAnalysis
"When comparing NVIDIA's GPUs to AMD's MI300X, we found that the potential on paper advantage of the MI300X was not realized due to a lack within AMD public release software stack and the lack of testing from AMD," noted SemiAnalysis, breaking down arguments in the report further, adding that "AMD's software experience is riddled with bugs rendering out of the box training with AMD is impossible. We were hopeful that AMD could emerge as a strong competitor to NVIDIA in training workloads, but, as of today, this is unfortunately not the case. The CUDA moat has yet to be crossed by AMD due to AMD's weaker-than-expected software Quality Assurance (QA) culture and its challenging out-of-the-box experience."NVIDIA has a massive advantage in that the software is fully functional. "As fast as AMD tries to fill in the CUDA moat, NVIDIA engineers are working overtime to deepen said moat with new features, libraries, and performance updates," noted the SemiAnalysis report. Tinybox and Tinybox Pro developer Tinygrad also confirmed this multiple times on their X profile, which also had a massive issue with AMD software in the past.
When taking a look at AMD Instinct MI300X and NVIDIA H100/H200 chips from 2023, the MI300X emerges as a clear winner performance-wise. It reaches 1,307 TFLOP/s for FP16 calculations, surpassing NVIDIA's H100, which delivers 989 TFLOP/s. The MI300X has 192 GB of HBM3 memory and a memory bandwidth of 5.3 TB/s. These specifications are even favourable to NVIDIA's H200, which offers 141 GB of HBM3e memory and 4.8 TB/s of memory bandwidth. The AMD chip also even has a lower total cost of ownership model, which has a 40% cheaper networking alone. On paper, the AMD chip looks superior to NVIDIA's Hopper offerings, but in reality, not so much.
AMD's internal teams have little access to GPU boxes to develop and refine the ROCm software stack. Tensorwave, which is among the largest providers of AMD GPUs in the cloud, took their own GPU boxes and gave AMD engineers the hardware on demand, free of charge, just so the software could be fixed. This is all while Tensorwave paid for AMD GPUs, renting their own GPUs back to AMD free of charge. Finally, SemiAnalysis has noted that the AMD software stack has been improved based on their suggestions. Still, there is a long way to go before the company reaches NVIDIA's CUDA level of stability and performance. For detailed analysis, visit SemiAnalysis report here.
33 Comments on AMD's Pain Point is ROCm Software, NVIDIA's CUDA Software is Still Superior for AI Development: Report
Merry Christmas!
ROCm's performance is way subpar still, achieving like a fraction of its theoretical performance (both in terms of memory bandwidth and also FLOPs).
It is still clearly a second class citizen, but it's the second class citizen. As soon as something comes out (defaulting to CUDA, of course), then people immediately get their hands trying to port it to ROCm.
The strides it has made in the past years is really impressive. I remember trying it out with an rx480 back then, and immediately buying a 1050ti to replace it, nowadays it's not 100% (nor that close), but you sure can get your hands dirt and at least get something working out of it.
As for lockups and hangs, eh, I've heard this quite a lot from some folks that do work with many AMD GPUs, but it's also not that uncommon in the Nvidia world either (albeit to a lesser degree). Just get a GH200 (lambdalabs even has those with a discount for now) and have some fun locking up your machine trying to use their so called "unified" memory haha
You get an hour and a half with the CEO. Then she spends the next hour and a half tearing someone a new one for getting surprised by the media.
Heads need to roll in AMDs software group.
Kinda nuts demanding enterprise support for desktop cards. That said, I would like AMD to follow through on promises. All they have done so far is the first half of what they promised and handed out a guide on how to talk to the fw better.