Apr 10th, 2025 04:13 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts

News Posts matching #18A

Return to Keyword Browsing

Intel's 18A Node Process Has Entered "Risk Production" - Foundry's Output Scaling Up

Intel's Vision 2025 conference ended yesterday—since then, media outlets have spent time poring over a multitude of announcements made during the two-day Las Vegas, Nevada event. Notably, Team Blue leadership confirmed that their Core Ultra 300 "Panther Lake" processor series is built to scale (on) 18A, and is on track for production later this year." Prominently-displayed presentation material indicated a roadmapped 2026 launch of "Panther Lake" client chips. The success of this next-gen mobile processor family is intertwined with Intel's Foundry service making marked progress. As summarized by the company's social media account, production teams are celebrating another milestone: "Intel 18A has entered risk production. This final stage is about stress-testing volume manufacturing before scaling up to high volume in the second half of 2025."

Under Pat Gelsinger's command, Team Blue set off on a "five nodes in four years" (5N4Y) adventure around mid-2021. This plan is set to conclude with the finalization of 18A, at some point this year, under a newly refreshed regime—with Lip-Bu Tan recently established as CEO. During an on-stage Intel Vision 2025 session, Kevin O'Buckley—Senior VP of Foundry Services—explained the meaning of: "risk production, while it sounds scary, is actually an industry standard terminology, and the importance of risk production is we've gotten the technology to a point where we're freezing it...Our customers have validated that; 'Yep, 18A is good enough for my product.' And we have to now do the 'risk' part, which is to scale it from making hundreds of units per day to thousands, tens of thousands, and then hundreds of thousands. So risk production..is scaling our manufacturing up and ensuring that we can meet not just the capabilities of the technology, but the capabilities at scale." By original "5N4Y" decree, top brass demanded that process nodes be (fully) available for production, rather than be stuck in a (not quite there) final high volume manufacturing (HVM) phase.

Intel Vision Presentation Labels Core Ultra 300 "Panther Lake" CPU Series as 2026 Products

Intel's freshly concluded Vision 2025 "Products Update and GTM" showcase included a segment dedicated to forthcoming Core Ultra 300 "Panther Lake" client processors. Industry watchdogs have grabbed a select few screenshots from Team Blue's broadcast from Las Vegas, Nevada—one backdropped slide confirms that Intel's next-generation mobile CPU series will launch in 2026. This information mirrors the company's Chinese office presenting of an AI PC roadmap—coverage of last month's event highlighted a scheduled first quarter 2026 "volume" arrival of "Core Ultra Next-gen Panther Lake (18A)."

Going back to early March, Intel leadership refuted online rumors of "Panther Lake" mobile CPUs being delayed into 2026, due to alleged problems encountered during the development of the Foundry service's 18A process node. An interviewed executive repeatedly insisted that his firm's brand-new series was on track for release within the second half of 2025. Fast-forward to the end of last week; Lip-Bu Tan expressed a similar outlook in a letter addressed to investors. The newly-established boss stated: "we will further enhance our (leadership) position in the second half of this year with the launch of Panther Lake, our lead product on Intel 18A, followed by Nova Lake in 2026." Industry insiders propose that the Core Ultra 300 series will become available in a very limited capacity come October, via an Early Enablement Program (EEP). Returning to this week—Jim Johnson, senior vice president of the firm's Client Computing Group, informed a watchful audience about the merits of his group's design: "I'm personally excited about Panther Lake because it combines the power efficiency of Lunar Lake, the performance of Arrow Lake, and is built to scale 18A and is on track for production later this year...Our client roadmap is the most innovative we've ever had, and we are far from done."

Intel's Foundry Eyes NVIDIA and Broadcom as Clients for Future Growth

According to an investment bank UBS note, two industry titans—NVIDIA and Broadcom—are potential future clients that could significantly enhance Intel's Foundry business revenue. To revitalize Intel, newly appointed CEO Lip-Bu Tan reportedly aims to forge strategic alliances with two AI chip manufacturers. Tan, who assumed leadership earlier this month, is determined to rebuild the company's reputation by focusing on customer satisfaction and accelerating the development of its foundry business. UBS analyst Tim Arcuri suggests that while Broadcom might join the client roster, NVIDIA appears to be the more likely candidate. Rather than initially manufacturing NVIDIA's AI GPUs, Intel is expected to begin production with gaming GPUs. NVIDIA could even move to AI GPU production at Intel's fabs if satisfied.

Despite some early optimism, Intel's new CEO is now committed to addressing issues related to power consumption in Intel's manufacturing processes. UBS analyst Tim Arcuri noted that the firm is pushing hard to introduce a lower-power version of its 18A process, the so-called 18AP, which has reportedly struggled to meet energy requirements. Additionally, Intel is working to improve its advanced packaging techniques to rival Taiwan's TSMC CoWoS (S/L/R variants) technology, aiming to overcome packaging constraints that have slowed AI chip production. Analysts speculate that Intel might also become a secondary supplier to tech giant Apple. A promising partnership with Taiwan's United Microelectronics (UMC) could pave the way for Intel's chips to find their way into future Apple products. Whatever materializes, we are yet to see. Switching foundries from TSMC to Intel entirely is not possible for any of the aforementioned fabless designers, so it will likely be dual-sourcing at first, with some non-flagship SKUs getting the full port to Intel 18A.

Intel Sparks Foundry Succession: Dr. Ann Kelleher to Retire After 30 Years of Work at Intel

Intel just started a succession of its Foundry division management. According to an Intel spokesperson for Tom's Hardware, Dr. Ann Kelleher is heading for retirement after spending 30 years at Intel. Dr. Kelleher is the executive vice president of Intel Foundry and has been the head of foundry technology development since 2020. For the past 30 years, Dr. Kelleher has been there for Intel's ups and downs, overcoming many challenges for the company. This year, Dr. Kelleher's impressive 30-year run at Intel is coming to an end as she heads to a well-deserved retirement. While not being active, her immense knowledge and education are still valuable, and she will remain a board advisor.

Succeeding her at the head of the Foundry front-end division will be Naga Chandrasekaran, who brings over three decades of semiconductor experience, 20 of which have been spent at Micron. Assisting Naga Chandrasekaran with back-end foundry operations like packaging will be Navid Shahriari, who spent over 35 years at Intel and is currently a senior vice president. In a statement for Tom's Hardware, Intel noted: "As previously announced, Dr. Ann Kelleher plans to retire later this year following a distinguished career spanning over 30 years with Intel. With a strong foundry leadership team in place and Intel 18A progressing well ahead of our first product launch and external customer tape-outs, this is a well-planned transition as we continue to advance our Foundry priorities in service to customers."

Initial Intel 18A Node Wafer Run Lands in Arizona Site, High-Volume Manufacturing Could Start Earlier Than Expected

Intel's 18A node, often referred to as Intel's silver lining, has just produced tangible result. In a LinkedIn post of Intel's engineering manager Pankaj Marria, we learn that Intel's 18A node is now being produced in initial wafer lots for testing and evaluation by Intel's customers. This means that Intel's 18A node PDK is officially in version 1.0, and customers are already using that PDK for testing of custom chips. "The Eagle has landed," noted the post, referring to the node development as a major milestone for a node developed and made in US. There were even posters with the same slogans being brought up, meaning that possible customers are also happy with inital test runs. With high-volume manufacturing slated for second half of 2025, we could even see 18A HVM going before initial targets.

Intel's leadership transition to CEO Lip-Bu Tan has overlapped with a recalibration of corporate messaging around the foundry business. Tan's internal communication explicitly frames Intel's strategy as a dual-track approach that maintains both product development and foundry services under unified corporate governance. This position counters speculation regarding potential foundry spinoff scenarios, though it doesn't categorically exclude future structural changes. Previous industry rumors had outlined potential joint venture configurations involving TSMC and major US semiconductor firms, including AMD, Broadcom, and NVIDIA, taking equity positions in a separate foundry entity. While such arrangements remain theoretically viable, Tan's emphasis on fab strategic importance aligns with predecessor Pat Gelsinger's manufacturing-centric vision, suggesting continuity in Intel's Foundry and Product model despite market pressure.

Intel Panther Lake on Track for H2 2025 Launch, Company Exec Disregards Rumors of 18A Delays

Earlier in the week, online chatter pointed to a possible delay in the production of Panther Lake silicon. Well-known industry analyst—Ming-Chi Kuo—has kept tabs on the inner workings of several big semiconductor players. A previous insider tale revealed NVIDIA's allegedly revised "Blackwell" architecture roadmap. Kuo's latest insight focused on Intel and their 18A node process; rumored setbacks have reportedly pushed the launch of next-gen Panther Lake (PTL) mobile processors into 2026. Team Blue leadership has already reacted to the relatively fresh allegations—earlier in the week, John Pitzer sat down with Morgan Stanley Semiconductor Research's Joe Moore. During their conference fireside chat, Intel's Corporate Vice President of Investor Relations addressed recent internet whispers.

When asked about 18A being developed on schedule, Pitzer responded with: "yes, it is. I mean, I tend to wake up every morning trying to fish through rumors that are coming across on social media about Intel 18A. I want to be very clear. Panther Lake is on track to launch in the second half of this year. That launch date has not changed. We feel really good about the progress that we are making. In fact, if you look at where our yields are on Panther Lake today, they're actually slightly ahead at a similar point in time to Meteor Lake, if you look at the development process for Meteor Lake. I think a couple of weeks ago, there was a technical paper out that actually looked at our SRAM density on Intel 18A that compared well with TSMC's N2. Lots of different metrics you can compare technologies on. I think in general, we think about Intel 18A being an N3 type/N2 sort of comp with the external peers." Panther Lake is set to become the company's first product family that will utilize its own Foundry's 18A node process. Mid-way through February, we heard about the importance of PTL with Intel's portable gaming strategy.

Intel's High-NA EUV Machines Already Processed 30,000 Wafers, More to Come with 14A Node

Intel has successfully deployed two advanced ASML High-NA Twinscan EXE:5000 EUV lithography systems at its D1 development facility near Hillsboro, Oregon, processing approximately 30,000 wafers in a single quarter. The High-NA EUV systems, each reportedly valued at $380 million, represent a substantial improvement over previous lithography tools, achieving resolution down to 8 nm with a single exposure compared to the 13.5 nm resolution of current Low-NA systems. Early operational data indicates these machines are approximately twice as reliable as previous EUV generations, addressing reliability challenges that previously hampered Intel's manufacturing progress. The ability to accomplish with a single exposure what previously required three exposures and approximately 40 processing steps has been reduced to just "single digit" processing steps.

Intel has historically been an early adopter of high-NA EUV lithography, a much more aggressive strategy than its competitors like TSMC, which manufactures its advanced silicon using low-NA EUV tools. The company plans to utilize these systems for its upcoming 14A chip manufacturing process, though no specific mass production date has been announced. While ASML classifies these Twinscan EXE:5000 systems as pre-production tools not designed for high-volume manufacturing, Intel's extensive wafer processing is more of a test bed. The early adoption provides Intel with valuable development opportunities across various High-NA EUV manufacturing aspects, including photomask glass, pellicles, and specialized chemicals that could establish future industry standards. Intel's current 18A node is utilizing Low-NA lithography tools, where Intel is only exploring High-NA with it for testing, before moving on to 14A high-volume manufacturing with High-NA EUV.

Intel 18A Is Officially Ready for Customer Projects

Intel has updated its 18A node website with the message, "Intel 18A is now ready for customer projects with the tape outs beginning in the first half of 2025: contact us for more information." The contact hyperlink includes an email where future customers can direct their questions to Intel. Designed as a turnaround node for Intel, 18A carries industry-leading features like SRAM density scaling comparable with TSMC's N2, 15% better performance per watt, and 30% better chip density vs. the Intel 3 process node used in Intel Xeon 6, as well as PowerVia backside-power delivery to increase transistor density.

Other features like RibbonFET are the first to replace FinFET transistors, making gate leakage a tighter control. Interestingly, Intel's first products to use the 18A node are client CPUs "Panther Lake" and "Clearwater Forest" Xeon CPUs for data centers. External Intel Foundry customers using the 18A node include Amazon's AWS, Microsoft for its internal silicon for Azure, and Broadcom exploring 18A-based designs. The process of gaining customers for advanced manufacturing is complex, as many existing Samsung/TSMC customers are not risking their capacity and contracts with established advanced silicon makers. However, if Intel's first few customers prove successful, many others could flock over to Intel's fabs as geopolitical tensions are questioning whether the current models of the semiconductor supply chain are feasible in the future. If US companies and startups decide to move with Intel for their chip manufacturing, Intel could experience a complete recovery.

Intel 18A Node SRAM Density On-Par with TSMC, Backside Power Delivery a Big Bonus

Intel has unveiled some interesting advances in semiconductor manufacturing at the International Solid-State Circuits Conference (ISSCC), showcasing the capabilities of its highly anticipated Intel 18A process technology. The presentation highlighted significant improvements in SRAM bit cell density. The PowerVia system, coupled with RibbonFET (GAA) transistors, is at the heart of Intel's node. The company demonstrated solid progress with their high-performance SRAM cells, achieving a reduction from 0.03 µm² in Intel 3 to 0.023 µm² in Intel 18A. High-density cells showed similar improvement, shrinking to 0.021 µm². These advancements represent scaling factors of 0.77 and 0.88 respectively, which are significant achievements in SRAM technology, once thought to be done with scaling benefits.

Implementing PowerVia technology is an Intel-first approach to addressing voltage drops and interference in processor logic areas. Using an "around the array" scheme, Intel strategically applies PowerVias to I/O, control, and decoder elements while optimizing bit cell design without a frontal power supply. The macro bit density of 38.1 MBit/mm² achieved by Intel 18A puts the company in a strong competitive position. While TSMC reported matching figures with their N2 process, Intel's comprehensive approach with 18A, combining PowerVia and GAA transistors, could challenge Smausng and TSMC, with long-term aspirations to compete for premium clients currently served by TSMC, including giants like NVIDIA, Apple, and AMD.

Intel Core Ultra 300 Series "Panther Lake-H" to Come with 64 W PL2 Power Configuration

Thanks to a well-known industry leaker, Jaykihn, Intel's Panther Lake-H processor family, built on the 18A process node, features three distinct configurations, with several power profiles for each case. The flagship model combines four "Cougar Cove" P-cores, eight "Skymont" E-cores, and four LPE cores alongside a 12-core Xe3 "Celestial" GPU. This variant supports LPDDR5X memory exclusively and delivers 180 TOPS of computational power for local AI workloads, operating at 25 W PL1 (base) and 64 W PL2 (turbo) power levels. Secondary configurations include a 4P+8E+4LP+4Xe3 model and a 4P+0E+4LP+4Xe3 variant, both rated at 100 TOPS and supporting both LPDDR5X and DDR5 memory.

The entry-level model operates at 15 W PL1 with 44 W PL2 in baseline mode, scaling to 25 W PL1 and 55 W PL2 in performance mode. All variants feature Thunderbolt 4 connectivity, with high-end models incorporating expanded PCIe 5.0 lane configurations. The integrated Xe3 graphics architecture scales from four to 12 cores across the product stack, with the top SKU eliminating DDR5 compatibility in favor of LPDDR5X optimization. The Panther Lake processor family is slated for launch within the latter half of 2025, and it will be the company's leading 18A product. As a "Lunar Lake" successor, Panther Lake will deliver improved IPC and optimization for new cores in the same device form-factor like laptops, ultrabooks, and handhelds.

Intel "Panther Lake" & "Wildcat Lake" SKU Details Leak Out

So far, this Friday (February 7) has been a bumper day for Intel CPU-related leaks. Golden Pig Upgrade and Jaykihn appear to be in competition with each other—they have uncovered all manner of speculative treasures across desktop and mobile segments. The latest revelation provides an early insight into unannounced feline-themed next-gen CPUs, courtesy of a Jaykihn social media post. Team Blue's Panther Lake processor family is slated for launch within the latter half of 2025—Intel officially stated that it would be their "lead product" on 18A. Older rumors had the "mobile-exclusive" Panther Lake processor family linked to a mixed configuration of new "Cougar Cove" P-cores and updated "Skymont" E-cores. According to today's leak, a variety of core configurations and feature sets are in the pipeline.

Jaykihn has listed three Panther Lake SKUs, and a "more mainstream" lower-end Wildcat Lake model. Common features include support for Thunderbolt 4 connectivity and LPDDR5X memory. Team Blue's rumored highest-end Panther Lake-H (PTL-H) processor appears to max out with a grand total of sixteen cores—consisting of 4 P-cores, 8 E-Cores, and 4 LP cores. The integrated graphics solution is (allegedly) a 12 core Xe3 "Celestial" GPU, with support for LPDDR5X memory—it is the only one on the list to completely jettison DDR5 compatibility. Insiders believe that the total platform (TOPS) rating is 180. As interpreted by VideoCardz, a 12-core "Panther Lake-U" (PTL-U) SKU is reportedly free of efficiency (E) units. The sole Wildcat Lake (WCL) model seems to sport a 2 P-core, 4-LP, and 2-Xe3 configuration.

Intel Pushes "Clearwater Forest" Xeon CPU Series Launch into 2026

Intel has officially announced that its "Clearwater Forest" Xeon processor family will be arriving somewhere in the first half of 2026. During a recent earnings call, interim co-CEO—Michelle Johnston Holthaus—discussed Team Blue's product roadmap for 2025 and beyond: "this year is all about improving Intel Xeon's competitive position as we fight harder to close the gap to the competition. The ramp of Granite Rapids has been a good first step. We are also making good progress on Clearwater Forest, our first Intel 18A server product that we plan to launch in the first half of next year." Press outlets have (correctly) pointed out that Intel's "Clearwater Forest" Xeon processors were originally slated for release in 2025, so the company's executive branch has seemingly admitted—in a low-key manner—that their next-gen series is delayed. Industry whispers from last autumn posit that Team Blue foundries were struggling with their proprietary 18A (1.8 nm) node process—at the time, watchdogs predicted a postponement of "Clearwater Forest" server processors.

The original timetable had "Clearwater Forest" server CPUs arriving not long after the launch of Intel's latest line of "Sierra Forest" products—288-core models from the Xeon 6-series. The delay into 2026 could be beneficial—The Register proposes that "Xeons bristling with E-cores" have not found a large enough audience. Holthaus disclosed a similar sentiment (in the Q4 earnings call): "what we've seen is that's more of a niche market, and we haven't seen volume materialize there as fast as we expected." Despite rumors swirling around complications affecting chip manufacturing volumes, Intel's temporary co-leaders believe that things are going well. David Zinsner—Team Blue's CFO—stated: "18A has been an area of good progress...Like any new process, there have been ups and downs along the way, but overall, we are confident that we are delivering a competitive process." His colleague added: "as the first volume customer of Intel 18A, I see the progress that Intel Foundry is making on performance and yield, and I look forward to being in production in the second half, as we demonstrate the benefits of our world-class design."

Speculative Intel "Nova Lake" CPU Core Configurations Leaked Online

Intel's freshly uploaded fourth-quarter 2024 "CEO/CFO earnings call comments" document has revealed grand CPU-related plans for 2025 and beyond. One of Team Blue's interim leaders—Michelle Johnston Holthaus—believes that "Nova Lake" processors (a next-generation client family) will arrive in 2026, following a comprehensive rollout of "Panther Lake" CPU products. This official timeline matches previously leaked and rumored development schedules—most notably, in a shipping manifest that was discovered last week. In recent times, industry watchdogs have linked "Nova Lake" to Intel's own 14A node and a TSMC 2 nm process node. Additionally, tipsters pointed to an apparent selection of Coyote Cove performance cores and Arctic Wolf efficiency-oriented cores.

Following yesterday's official announcements, a leaker shared several insights—theorized core configurations and manufacturing details were posted on the Hardware subreddit. Community members were engaged in a debate over Intel's "killing of Falcon Shore," but a plucky contributor—going under the moniker "Exist50"—redirected conversation to all-things "Nova Lake." They believe that Intel has shifted all "compute dies to TSMC" for manufacturing, after a change in plans—initial designs had the "8+16 die" on TSMC's N2P, and the "4+8 die on Intel 18A." Exist50 seemed to have inside track knowledge of product ranges: "Nova Lake (NVL) has a unified HUB/SoC die across mobile and desktop. So yeah, the baseline there is 4+8+4. But there's at least one more die for mobile." The flagship desktop (NVL-S or NVL-SK) chip's configuration could feature as many as sixteen performance cores and thirty-two efficiency cores, due to tile reuse—2x (8P+16E). Exist50 advised Intel CPU enthusiasts to forgo current generation offerings. "Nova Lake" should be: "quite a jump from Arrow Lake (ARL) in terms of MT performance, to say the least. I think anyone who buys ARL will end up regretting it, big time!"

Intel Confirms Panther Lake for 2H 2025, Nova Lake in 2026, Falcon Shores Canceled

Intel shared some news and updates about its upcoming CPU architectures during the Q4 earnings call. Intel confirmed that "Panther Lake", its next major CPU, is set to be released in late 2025. "Panther Lake" will use Intel's latest 18A manufacturing process and might be part of the Core Ultra 300 series. "Panther Lake" is rumored to combine next-generation "Cougar Cove" P-cores with existing "Skymont" E-cores both in the Compute complex, and in the SoC tile as low-power island E-cores. However, Intel hasn't confirmed if it will be available for desktop systems.

The following CPU architecture, "Nova Lake", is set to debut in 2026. Unlike "Panther Lake", we know "Nova Lake" will work on desktop computers. This suggests desktop users might need to wait until 2026 for an upgrade unless Intel surprises us with a desktop version of "Panther Lake" or an alternative option.

Intel "Nova Lake" Test CPU Appears, Targeting 2026 Launch

Shipping manifests at NBD.ltd have revealed the presence of Intel's "Nova Lake" test chips, providing insight into the development timeline of the company's 2026 processor platform. The discovery comes as Intel prepares for the launch of its "Panther Lake" CPUs on the 18A process node in late 2025. Nova Lake is positioned to replace both Panther Lake for mobile devices and "Arrow Lake" for desktop systems. The manufacturing process remains unconfirmed, with Intel potentially using either its in-house 14A node or TSMC's 2 nm technology. Following recent practices, Intel may split production between its own facilities and TSMC for different components. Rumored specifications show that Nova Lake will use Coyote Cove performance cores and Arctic Wolf efficiency cores.

Unlike Lunar Lake, it will not incorporate on-package memory, maintaining a more conventional design approach. The test chip's appearance suggests Intel is adhering to its development schedule. This timing aligns with the company's plans for Panther Lake's mass production in the second half of 2025, a structured transition between generations. Documents point to "Razor Lake" as Nova Lake's eventual successor, though detailed specifications are not yet available. Panther Lake, the immediate predecessor to Nova Lake, will focus primarily on mobile computing, with desktop variants limited to Mini PC implementations. This approach mirrors the Meteor Lake generation, which saw limited desktop release through the "PS" series for Edge platforms. The Nova Lake platform is expected to support DDR5 memory and may introduce PCIe Gen 6.0 compatibility, with final specifications unconfirmed.

Intel Foundry Adds New Customers to RAMP-C Project for US Defense

Intel Foundry has announced the onboarding of new defense industrial base (DIB) customers, Trusted Semiconductor Solutions and Reliable MicroSystems, as part of the third phase of the Rapid Assured Microelectronics Prototypes - Commercial (RAMP-C) efforts under the Trusted & Assured Microelectronics (T&AM) Program in the Office of the Under Secretary of Defense for Research and Engineering (OUSD (R&E)). The RAMP-C project, awarded through the Strategic & Spectrum Missions Advanced Resilient Trusted Systems (S²MARTS) Other Transaction Authority (OTA), allows DIB customers to take advantage of Intel Foundry's leading-edge Intel 18A process technology and advanced packaging for prototypes and high-volume manufacturing of commercial and DIB products for the U.S. Department of Defense (DoD).

"We are very excited to welcome Trusted Semiconductor Solutions and Reliable MicroSystems to the RAMP-C project we are engaged in with the DoD. The collaboration will drive cutting-edge, secure semiconductor solutions essential for our nation's security, economic growth and technological leadership. We are proud of the pivotal role Intel Foundry plays in supporting U.S. national defense and look forward to working closely with our newest DIB customers to enable their innovations with our leading-edge Intel 18A technology," said Kapil Wadhera, vice president of Intel Foundry and general manager of Aerospace, Defense and Government Business Group.

Intel "Panther Lake" Confirmed for 2025 Launch, Based on Intel 18A Node

Intel at its 2025 International CES keynote unveiled its next-generation mobile processor, codenamed "Panther Lake." Intel confirmed that the chip will be built on its homebrew Intel 18A foundry node. The current "Lunar Lake" and "Arrow Lake" processors see the company leverage TSMC N3 node for the Compute tiles. "Panther Lake" would see the x86-64 core IP return to an Intel node. "Panther Lake" is rumored to combine next-generation "Cougar Cove" P-cores with existing "Skymont" E-cores both in the Compute complex, and in the SoC tile as low-power island E-cores. "Panther Lake" is expected to debut in the second half of 2025.

Intel's "Wildcat Lake" Emerges as New Entry-Level Processor Series

According to recently discovered shipping manifests, Intel is developing a new processor series codenamed "Wildcat Lake," potentially succeeding their entry-level "Intel Processor" lineup based on Alder Lake-N. The documents, revealed by x86deadandback, suggest a 2025 launch timeline for these chips targeting lightweight laptops and mini-PCs. The shipping records from October 30 mention CPU reball equipment compatible with BGA 1516 sockets, measuring 35 x 25 mm, indicating early validation testing is underway. These processors are expected to be manufactured using Intel's advanced 18A process technology, sharing the same manufacturing node as the upcoming Panther Lake series. Early technical specifications of Wildcat Lake point to a hybrid architecture combining next-generation "Cougar Cove" performance cores with "Darkmont" low-power efficiency (LPE) cores in a 2P+4LPE configuration.

This design appears to separate the core clusters, departing from traditional shared ring bus arrangements, similar to the approach taken in Intel's Lunar Lake and Arrow Lake processors. While Wildcat Lake's exact position in Intel's product stack remains unclear, it could serve as a modernized replacement for the what were Pentium and Celeron processor families. These chips traditionally power devices like Chromebooks, embedded systems, and home servers, with the new series potentially offering significant performance improvements for these market segments. The processor is expected to operate in the sub-double-digit TDP power envelope, positioning it below the more powerful Lunar Lake series. Graphics capabilities will likely be more modest than Lunar Lake's Xe2 architecture, aligning with its entry-level market positioning.

Intel "Panther Lake" Confirmed on 18A Node, Powering-On With ES0 Silicon Revision

During Barclays 22nd Annual Global Technology Conference, Intel was a guest and two of the interim company co-CEOs Michelle Johnston Holthaus and David Zinsner gave a little update on the state of affairs at Intel. One of the most interesting aspects of the talk was Intel's upcoming "Panther Lake" processor—a direct successor to Intel Core Ultra 200S "Arrow Lake-H" mobile processors. The company confirmed that Panther Lake would utilize an Intel 18A node and that a few select customers have powered on Panther Lake on the E0 engineering sample chip. "Now we are using Intel Foundry for Panther Lake, which is our 2025 product, which will land on 18A. And this is the first time that we're customer zero in a long time on an Intel process," said interim co-CEO Michelle Johnston Holthaus, adding, "But just to give some assurances, on Panther Lake, we have our ES0 samples out with customers. We have eight customers that have powered on, which gives you just kind of an idea that the health of the silicon is good and the health of the Foundry is good."

While we don't know what ES0 means for Intel internally, we can assume that it is one of the first engineering samples on the 18A. The "ES" moniker usually refers to engineering samples, and zero after it could be the first design iteration. For reference, Intel's "Panther Lake-H" will reportedly have up to 18 cores: 6 P-cores, 8 E-cores, and 4 LP cores. The design brings back low-power island E-cores in the SoC tile. The P-cores use "Cougar Cove," which should have a higher IPC than "Lion Cove," while keeping the existing "Skymont" E-cores. The SoC tile may move from Arrow Lake's 6 nm to a newer process to fit the LP cores and an updated NPU. The iGPU is said to use the Xe3 "Celestial" architecture. With Arrow Lake-H launching in early 2025, Panther Lake-H likely won't arrive until 2026.

Intel 18A Yields Are Actually Okay, And The Math Checks Out

A few days ago, we published a report about Intel's 18A yields being at an abysmal 10%. This sparked quite a lot of discussion among the tech community, as well as responses from industry analysts and Intel's now ex-CEO Pat Gelsinger. Today, we are diving into known information about Intel's 18A node and checking out what the yields of possible products could be, using tools such as Die Yield Calculator from SemiAnalysis. First, we know that the defect rate of the 18A node is 0.4 defects per cm². This information is from August, and up-to-date defect rates could be much lower, especially since semiconductor nodes tend to evolve even when they are production-ready. To measure yields, manufacturers use various yield models based on the information they have, like the aforementioned 0.4 defect density. Expressed in defects per square centimeter (def/cm²), it measures manufacturing process quality by quantifying the average number of defects present in each unit area of a semiconductor wafer.

Measuring yields is a complex task. Manufacturers design some smaller chips for mobile and some bigger chips for HPC tasks. Thus, these two would have different yields, as bigger chips require more silicon area and are more prone to defects. Smaller mobile chips occupy less silicon area, and defects occurring on the wafer often yield more usable chips than wasted silicon. Stating that a node only yields x% of usable chips is only one side of the story, as the size of the test production chip is not known. For example, NVIDIA's H100 die is measuring at 814 mm²—a size that is pushing modern manufacturing to its limits. The size of a modern photomask, the actual pattern mask used in printing the design of a chip to silicon wafer, is only 858 mm² (26x33 mm). Thus, that is the limit before exceeding the mask and needing a redesign. At that size, nodes are yielding much less usable chips than something like a 100 mm² mobile chip, where defects don't wreak havoc on the yield curve.

Intel's Foundry Plan Remains the Same, Interim Co-CEO David Zinsner Confirms

Intel's Foundry business is the company's current pain point and probably the reason why the company board of directors forced out ex-CEO Pat Gelsinger. However, the new interim co-CEO, David Zinsner, confirmed that the foundry plan would remain the same. At the UBS technology conference, Zinsner indicated that the company's core strategy remains unchanged and reiterated the forecasts shared in October, highlighting optimism about growth in its PC and server segments. This is a healthy sign that Intel will not lose its foundry subsidiary, which, even though difficult to operate, could be Intel's silver lining with growth opportunities ahead.

Yesterday, we covered the choice of Lip-Bu Tan as Intel's next CEO. However, the new co-CEO, Zinsner, stated, "I'm not in the process, but I'm guessing that the CEO will have some capability around foundry as well as on the product side." A new CEO would be left with a lot of work that, apparently, no one so far can finish. There are speculations that Intel's 18A node is yielding 10% of usable silicon, while Intel's head of foundry business, Naga Chandrasekaran, has noted that 18A node is going through evolution phases to improve final yields and remain profitable, noting that "there's nothing fundamentally challenging on this node now. It is about going through the remaining yield challenges, defect density challenges."

Intel 18A Process Node Clocks an Abysmal 10% Yield: Report

In case you're wondering why Intel went with TSMC 3 nm to build the Compute tile of its "Arrow Lake" processor, and the SoC tile of "Lunar Lake," instead of Intel 3, or even Intel 20A, perhaps there's more to the recent story about Broadcom voicing its disappointment in the Intel 18A foundry node. The September 2024 report didn't specify a number to what yields on the Intel 18A node looked like to spook Broadcom, but we now have some idea as to just how bad things are. Korean publication Chosun, which tracks developments in the electronics and ICT industries, reports that yields on the Intel 18A foundry node stand at an abysmal 10%, making it unfit for mass-production. Broadcom validated Intel 18A as it was prospecting a cutting-edge node for its high-bandwidth network processors.

The report also hints that Intel's in-house foundry nodes going off the rails could be an important event leading up to the company's Board letting go of former CEO Pat Gelsinger, as huge 2nd order effects will be felt across the company's entire product stack in development. For example, company roadmaps put the company's next-generation "Clearwater Forest" server processor, slated for 2025, as being designed for the Intel 18A node. Unless Intel Foundry can pull a miracle, an effort must be underway to redesign the chip for whichever TSMC node is considered cutting-edge in 2025.

Intel's $7.86 Billion CHIPS Act Grant Forbids Selling Its Foundry Business

When Intel announced the completion of its $7.86 billion CHIPS Act grant from the Biden-Harris administration on Tuesday, we assumed some special terms were tied to the grant. Intel is essentially making a law-abiding promise to the US government that it will not sell its stake in the Intel Foundry unit under any circumstances, even if it manages to become an independent entity. This ensures that Intel is the major voting party in any event. Intel disclosed in a regulatory document that if Intel Foundry becomes its own private entity, Intel must maintain majority control with at least 50.1% ownership to keep its subsidy agreements. Additionally, if Intel Foundry goes public in the future, no single investor would be allowed to acquire more than 35% of shares unless Intel remains the largest shareholder, as this would trigger control-change clauses.

This essentially positions Intel Foundry as too big and too important of a unit to fail, both for Intel and the US government. Given Intel's ties with the US Department of Defense, with up to $3 billion in direct funding under the CHIPS and Science Act for the Secure Enclave program, Intel is vital for providing the US government with advanced semiconductor manufacturing. Strategically, Intel Foundry is the sole US-based company that competes with advanced manufacturing companies such as TSMC and Samsung. Even with TSMC and Samsung driving investments on US soil with advanced fabs, Intel's work with the government requires additional safety and secrecy clearances that only a US firm could provide. In the latest Q3 2024 financial results, Intel Foundry recorded a revenue of $4.4 billion with $5.8 billion in losses. While the operating marking of negative 134.3% seems like a disaster, upcoming quarters will bring it to a positive with more customers and using already developed nodes like 18A.

Intel Could Manufacture Apple's Next-Generation A20 SoC for iPhone

Apple is reportedly considering diversifying its chip manufacturing strategy with a new silicon manufacturer: Intel. While the upcoming iPhone 17 series, expected next year, will likely feature A19 chips produced by TSMC, a recent rumor from Chinese leaker Fixed Focus Digital hints at a potential switch to Intel for the A20 chipsets powering the 2026 iPhone 18 series. The A18 and A18 Pro chipsets debuted alongside the iPhone 16 series in September 2024, manufactured using TSMC's N3E node. Apple's A19 chips are expected to upgrade to TSMC's N3P node. According to the source, Apple is seeking an Intel 20A node. However, since the A20 node is canceled in favor of 18A, Apple could be an Intel Foundry customer for either 18A or 14A nodes.

Despite the buzz, skepticism persists. Intel has historically struggled with process node transitions and even outsourced production of its Arrow Lake CPUs to TSMC, raising questions about its readiness to deliver on Apple's demands. On the other hand, alternative reports suggest Apple might stick with TSMC's yet-unnamed 2 nm node for the A20, maintaining continuity in its supply chain. As the iPhone 18 series remains two years away, much can change. For now, we are left speculating whether this rumored collaboration with Intel represents a new chapter in Apple's chipset innovation or just a rumor with little substance. If the US government mandates more domestic production, chip designers could be looking at some of the more local manufacturing options, like Intel does on US soil. That could force Apple, NVIDIA, AMD, and Qualcomm to look into Intel's offerings.

"Jaguar Shores" is Intel's Successor to "Falcon Shores" Accelerator for AI and HPC

Intel has prepared "Jaguar Shores," its "next-next" generation AI and HPC accelerator, successor to its upcoming "Falcon Shores" GPU. Revealed during a technical workshop at the SC2024 conference, the chip was unveiled by Intel's Habana Labs division, albeit unintentionally. This announcement positions Jaguar Shores as the successor to Falcon Shores, which is scheduled to launch next year. While details about Jaguar Shores remain sparse, its designation suggests it could be a general-purpose GPU (GPGPU) aimed at both AI training, inferencing, and HPC tasks. Intel's strategy aligns with its push to incorporate advanced manufacturing nodes, such as the 18A process featuring RibbonFET and backside power delivery, which promise significant efficiency gains, so we can expect to see upcoming AI accelerators incorporating these technologies.

Intel's AI chip lineup has faced numerous challenges, including shifting plans for Falcon Shores, which has transitioned from a CPU-GPU hybrid to a standalone GPU, and cancellation of Ponte Vecchio. Despite financial constraints and job cuts, Intel has maintained its focus on developing cutting-edge AI solutions. "We continuously evaluate our roadmap to ensure it aligns with the evolving needs of our customers. While we don't have any new updates to share, we are committed to providing superior enterprise AI solutions across our CPU and accelerator/GPU portfolio." an Intel spokesperson stated. The announcement of Jaguar Shores shows Intel's determination to remain competitive. However, the company faces steep competition. NVIDIA and AMD continue to set benchmarks with performant designs, while Intel has struggled to capture a significant share of the AI training market. The company's Gaudi lineup ends with third generation, and Gaudi IP will get integrated into Falcon Shores.

Return to Keyword Browsing
Apr 10th, 2025 04:13 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts