Apr 18th, 2025 17:36 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts

News Posts matching #400 W

Return to Keyword Browsing

ASUS ROG Astral RTX 5080 OC BIOS Update Increases Max. TGP to 450 W - Originally 400 W

TechPowerUp's W1zzard did not honor the ASUS ROG Astral RTX 5080 OC Edition graphics card model with any awards—as disclosed in his late January evaluation, a major negative point was highlighted: "no additional power limit increases allowed." The premium-tier ASUS offering managed to top TPU's "Maximum Overclock Comparison" GeForce RTX 5080-class table; comfortably leading the pack with an out-of-the-box (default) 400 W power setting. Reviewers and well-heeled owners—of this $1500+ special quad-fan package—have lamented the apparent lack of extra headroom. Sitting in fifth place was GIGABYTE's RTX 5080 GAMING OC SKU; a card that can support up to 450 W. As reported by VideoCardz earlier today, ASUS has taken onboard aforementioned feedback.

Resultant under-the-hood tinkerings were implemented mid-way through last month. The "ROG Astral GeForce RTX 5080 16 GB GDDR7 OC Edition" support page has welcomed a new downloadable file—authored on March 14—this BIOS update is advertised as being capable of: "increasing the (model's) maximum TGP to 450 W." Additional bragging rights will be granted with this patch; owners can boast about their expensive bits of kit being further enhanced—NVIDIA's reference specification TGP/TDP is 360 W. Thumbs up go to Team ASUS once again—mid-February Astral series updates tweaked noise profiles; not too long after an absorption of launch day criticism.

NVIDIA GeForce RTX 5090 Features 575 W TDP, RTX 5080 Carries 360 W TDP

According to two of the most accurate leakers, kopite7kimi and hongxing2020, NVIDIA's GeForce RTX 5090 and RTX 5080 will feature 575 W and 360 W TDP, respectively. Previously, rumors have pointed out that these GPU SKUs carry 600 W and 400 W TGPs, which translates into total graphics power, meaning that an entire GPU with its RAM and everything else draws a certain amount of power. However, TDP (thermal design power) is a more specific value attributed to the GPU die or the specific SKU in question. According to the latest leaks, 575 Watts are dedicated to the GB202-300-A1 GPU die in the GeForce RTX 5090, while 25 Watts are for GDDR7 memory and other components on the PCB.

For the RTX 5080, the GB203-400-A1 chip is supposedly drawing 360 Watts of power alone, while 40 Watts are set aside for GDDR7 memory and other components in the PC. The lower-end RTX 5080 uses more power than the RTX 5090 because its GDDR7 memory modules reportedly run at 30 Gbps, while the RTX 5090 uses GDDR7 memory modules with 28 Gbps speeds. Indeed, the RTX 5090 uses more modules or higher capacity modules, but the first-generation GDDR7 memory could require more power to reach the 30 Gbps threshold. Hence, more power is set aside for that. In future GDDR7 iterations, more speed could be easily achieved without much more power.

NVIDIA GeForce RTX 5090 and RTX 5080 Specifications Surface, Showing Larger SKU Segmentation

Thanks to the renowned NVIDIA hardware leaker kopite7Kimi on X, we are getting information about the final versions of NVIDIA's first upcoming wave of GeForce RTX 50 series "Blackwell" graphics cards. The two leaked GPUs are the GeForce RTX 5090 and RTX 5080, which now feature a more significant gap between xx80 and xx90 SKUs. For starters, we have the highest-end GeForce RTX 5090. NVIDIA has decided to use the GB202-300-A1 die and enabled 21,760 FP32 CUDA cores on this top-end model. Accompanying the massive 170 SM GPU configuration, the RTX 5090 has 32 GB of GDDR7 memory on a 512-bit bus, with each GDDR7 die running at 28 Gbps. This translates to 1,568 GB/s memory bandwidth. All of this is confined to a 600 W TGP.

When it comes to the GeForce RTX 5080, NVIDIA has decided to further separate its xx80 and xx90 SKUs. The RTX 5080 has 10,752 FP32 CUDA cores paired with 16 GB of GDDR7 memory on a 256-bit bus. With GDDR7 running at 28 Gbps, the memory bandwidth is also halved at 784 GB/s. This SKU uses a GB203-400-A1 die, which is designed to run within a 400 W TGP power envelope. For reference, the RTX 4090 has 68% more CUDA cores than the RTX 4080. The rumored RTX 5090 has around 102% more CUDA cores than the rumored RTX 5080, which means that NVIDIA is separating its top SKUs even more. We are curious to see at what price point NVIDIA places its upcoming GPUs so that we can compare generational updates and the difference between xx80 and xx90 models and their widened gaps.

AMD EPYC "Turin" 9000-series Motherboard Specs Suggest Support for DDR5 6000 MT/s

AMD's next-gen EPYC Zen 5 processor family seems to be nearing launch status—late last week, momomo_us uncovered an unnamed motherboard's datasheet; this particular model will accommodate a single 9000-series CPU—with a maximum 400 W TDP—via an SP5 socket. 500 W and 600 W limits have been divulged (via leaks) in the past, so the 400 W spec could be an error or a: "legitimate compatibility issue with the motherboard, though 400 Watts would be in character with high-end Zen 4 SP5 motherboards," according to Tom's Hardware analysis.

AMD's current-gen "Zen 4" based EPYC "Genoa" processor family—sporting up to 96-cores/192-threads—is somewhat limited by its DDR5 support transfer rates of up to 4800 MT/s. The latest leak suggests that "Turin" is upgraded quite nicely in this area—when compared to predecessors—the SP5 board specs indicate DDR5 speeds of up to 6000 MT/s with 4 TB of RAM. December 2023 reports pointed to "Zen 5c" variants featuring (max.) 192-core/384-thread configurations, while larger "Zen 5" models are believed to be "modestly" specced with up to 128-cores and 256-threads. AMD has not settled on an official release date for its EPYC "Turin" 9000-series processors, but a loose launch window is expected "later in 2024" based on timeframes presented within product roadmaps.
Return to Keyword Browsing
Apr 18th, 2025 17:36 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts