News Posts matching #A64FX

Return to Keyword Browsing

TOP500: Frontier Keeps Top Spot, Aurora Officially Becomes the Second Exascale Machine

The 63rd edition of the TOP500 reveals that Frontier has once again claimed the top spot, despite no longer being the only exascale machine on the list. Additionally, a new system has found its way into the Top 10.

The Frontier system at Oak Ridge National Laboratory in Tennessee, USA remains the most powerful system on the list with an HPL score of 1.206 EFlop/s. The system has a total of 8,699,904 combined CPU and GPU cores, an HPE Cray EX architecture that combines 3rd Gen AMD EPYC CPUs optimized for HPC and AI with AMD Instinct MI250X accelerators, and it relies on Cray's Slingshot 11 network for data transfer. On top of that, this machine has an impressive power efficiency rating of 52.93 GFlops/Watt - putting Frontier at the No. 13 spot on the GREEN500.

Fujitsu Details Monaka: 150-core Armv9 CPU for AI and Data Center

Ever since the creation of A64FX for the Fugaku supercomputer, Fujitsu has been plotting the development of next-generation CPU design for accelerating AI and general-purpose HPC workloads in the data center. Codenamed Monaka, the CPU is the latest creation for TSMC's 2 nm semiconductor manufacturing node. Based on Armv9-A ISA, the CPU will feature up to 150 cores with Scalable Vector Extensions 2 (SVE2), so it can process a wide variety of vector data sets in parallel. Using a 3D chiplet design, the 150 cores will be split into different dies and placed alongside SRAM and I/O controller. The current width of the SVE2 implementation is unknown.

The CPU is designed to support DDR5 memory and PCIe 6.0 connection for attaching storage and other accelerators. To bring cache coherency among application-specific accelerators, CXL 3.0 is present as well. Interestingly, Monaka is planned to arrive in FY2027, which starts in 2026 on January 1st. The CPU will supposedly use air cooling, meaning the design aims for power efficiency. Additionally, it is essential to note that Monaka is not a processor that will power the post-Fugaku supercomputer. The post-Fugaku supercomputer will use post-Monaka design, likely iterating on the design principles that Monaka uses and refining them for the launch of the post-Fugaku supercomputer scheduled for 2030. Below are the slides from Fujitsu's presentation, in Japenese, which highlight the design goals of the CPU.

India Homegrown HPC Processor Arrives to Power Nation's Exascale Supercomputer

With more countries creating initiatives to develop homegrown processors capable of powering powerful supercomputing facilities, India has just presented its development milestone with Aum HPC. Thanks to information from the report by The Next Platform, we learn that India has developed a processor for powering its exascale high-performance computing (HPC) system. Called Aum HPC, the CPU was developed by the National Supercomputing Mission of the Indian government, which funded the Indian Institute of Science, the Department of Science and Technology, the Ministry of Electronics and Information Technology, and C-DAC to design and manufacture the Aum HPC processors and create strong, strong technology independence.

The Aum HPC is based on Armv8.4 CPU ISA and represents a chiplet processor. Each compute chiplet features 48 Arm Zeus Cores based on Neoverse V1 IP, so with two chiplets, the processor has 96 cores in total. Each core gets 1 MB of level two cache and 1 MB of system cache, for 96 MB L2 cache and 96 MB system cache in total. For memory, the processor uses 16-channel 32-bit DDR5-5200 with a bandwidth of 332.8 GB/s. To expand on that, HBM memory is present, and there is 64 GB of HBM3 with four controllers capable of achieving a bandwidth of 2.87 TB/s. As far as connectivity, the Aum HPC processor has 64 PCIe Gen 5 Lanes with CXL enabled. It is manufactured on a 5 nm node from TSMC. With a 3.0 GHz typical and 3.5+ GHz turbo frequency, the Aum HPC processor is rated for a TDP of 300 Watts. It is capable of producing 4.6+ TeraFLOPS per socket. Below are illustrations and tables comparing Aum HPC to Fujitsy A64FX, another Arm HPC-focused design.

Fujitsu Achieves Major Technical Milestone with World's Fastest 36 Qubit Quantum Simulator

Fujitsu has successfully developed the world's fastest quantum computer simulator capable of handling 36 qubit quantum circuits on a cluster system featuring Fujitsu's "FUJITSU Supercomputer PRIMEHPC FX 700" ("PRIMEHPC FX 700")(1), which is equipped with the same A64FX CPU that powers the world's fastest supercomputer, Fugaku.

The newly developed quantum simulator can execute the quantum simulator software "Qulacs"(3) in parallel at high speed, achieving approximately double the performance of other significant quantum simulators in 36 qubit quantum operations. Fujitsu's new quantum simulator will serve as an important bridge towards the development of quantum computing applications that are expected to be put to practical use in the years ahead.

TOP500 Update Shows No Exascale Yet, Japanese Fugaku Supercomputer Still at the Top

The 58th annual edition of the TOP500 saw little change in the Top10. The Microsoft Azure system called Voyager-EUS2 was the only machine to shake up the top spots, claiming No. 10. Based on an AMD EPYC processor with 48 cores and 2.45GHz working together with an NVIDIA A100 GPU and 80 GB of memory, Voyager-EUS2 also utilizes a Mellanox HDR Infiniband for data transfer.

While there were no other changes to the positions of the systems in the Top10, Perlmutter at NERSC improved its performance to 70.9 Pflop/s. Housed at the Lawrence Berkeley National Laboratory, Perlmutter's increased performance couldn't move it from its previously held No. 5 spot.

Intel Confirms HBM is Supported on Sapphire Rapids Xeons

Intel has just released its "Architecture Instruction Set Extensions and Future Features Programming Reference" manual, which serves the purpose of providing the developers' information about Intel's upcoming hardware additions which developers can utilize later on. Today, thanks to the @InstLatX64 on Twitter we have information that Intel is bringing on-package High Bandwidth Memory (HBM) solution to its next-generation Sapphire Rapids Xeon processors. Specifically, there are two instructions mentioned: 0220H - HBM command/address parity error and 0221H - HBM data parity error. Both instructions are there to address data errors in HBM so the CPU operates with correct data.

The addition of HBM is just one of the many new technologies Sapphire Rapids brings. The platform is supposedly going to bring many new technologies like an eight-channel DDR5 memory controller enriched with Intel's Data Streaming Accelerator (DSA). To connect to all of the external accelerators, the platform uses PCIe 5.0 protocol paired with CXL 1.1 standard to enable cache coherency in the system. And as a reminder, this would not be the first time we see a server CPU use HBM. Fujitsu has developed an A64FX processor with 48 cores and HBM memory, and it is powering today's most powerful supercomputer - Fugaku. That is showing how much can a processor get improved by adding a faster memory on-board. We are waiting to see how Intel manages to play it out and what we end up seeing on the market when Sapphire Rapids is delivered.

TOP500 Expands Exaflops Capacity Amidst Low Turnover

The 56th edition of the TOP500 saw the Japanese Fugaku supercomputer solidify its number one status in a list that reflects a flattening performance growth curve. Although two new systems managed to make it into the top 10, the full list recorded the smallest number of new entries since the project began in 1993.

The entry level to the list moved up to 1.32 petaflops on the High Performance Linpack (HPL) benchmark, a small increase from 1.23 petaflops recorded in the June 2020 rankings. In a similar vein, the aggregate performance of all 500 systems grew from 2.22 exaflops in June to just 2.43 exaflops on the latest list. Likewise, average concurrency per system barely increased at all, growing from 145,363 cores six months ago to 145,465 cores in the current list.

Fujitsu Completes Delivery of Fugaku Supercomputer

Fujitsu has today officially completed the delivery of the Fugaku supercomputer to the Riken scientific research institute of Japan. This is a big accomplishment as the current COVID-19 pandemic has delayed many happenings in the industry. However, Fujitsu managed to play around that and deliver the supercomputer on time. The last of 400 racks needed for the Fugaku supercomputer was delivered today, on May 13th, as it was originally planned. The supercomputer is supposed to be fully operational starting on the physical year of 2021, where the installation and setup will be done before.

As a reminder, the Fugaku is an Arm-based supercomputer consisting out of 150 thousand A64FX CPUs. These CPUs are custom made processors by Fujitsu based on Arm v8.2 ISA, and they feature 48 cores built on TSMC 7 nm node and running above 2 GHz. Packing 8.786 billion transistors, this monster chips use HBM2 memory instead of a regular DDR memory interface. Recently, a prototype of the Fugaku supercomputer was submitted to the Top500 supercomputer list and it came on top for being the most energy-efficient of all, meaning that it will be as energy efficient as it will be fast. Speculations are that it will have around 400 PetaFlops of general compute power for Dual-Precision workloads, however, for the specific artificial intelligence applications, it should achieve ExaFLOP performance target.
K SuperComputer
Return to Keyword Browsing
Nov 13th, 2024 04:21 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts