News Posts matching #Granite Ridge

Return to Keyword Browsing

AMD Ryzen 9000 "Zen 5" Desktop Processor Pricing and Availability Confirmed

AMD, with a post on X confirmed the pricing and availability of its new Ryzen 9000 "Granite Ridge" desktop processor models. These were supposed to launch on July 31, but faced a delay, and are now facing a staggered launch. The 8-core Ryzen 7 9700X and 6-core Ryzen 5 9600X will be available from tomorrow, August 8, 2024. The flagship 16-core Ryzen 9 9950X and 12-core Ryzen 9 9900X follow a week later, on August 15. The company also confirmed pricing of the four chips in USD SEP. The Ryzen 9 9950X is confirmed with a $650 price, followed by the Ryzen 9 9900X at $500, the Ryzen 7 9700X at $360, and the Ryzen 5 9600X at $280. These are slightly cheaper than their predecessors, with the 7950X, 7900X, 7700X, and 7600X, launching at $700, $550, $400, and $300, respectively.

AMD Ryzen "Fire Range" Mobile Processor Retains FL1 Package

AMD is readying a successor to its Ryzen 7045 series "Dragon Range" mobile processor for gaming notebooks and portable workstations. While we don't know its processor model naming yet, the chip is codenamed "Fire Range." We are learning that it will retain the FL1 package as "Dragon Range," which means it will be pin-compatible. This would significantly reduce development costs for notebook OEMs, as they can simply carry over their mainboard designs from their notebooks based on "Dragon Range."

"Fire Range" is essentially a mobile BGA version of the upcoming Ryzen 9000 "Granite Ridge" desktop processor. The FL1 package measures 40 mm x 40 mm in size, and has substrate for two CCDs and a cIOD, just like the desktop chip. "Fire Range" hence features one or two 4 nm "Zen 5" CCDs, depending on the processor model, and the 6 nm client I/O die. Much like "Dragon Range," the "Fire Range" chip will lack support for LPDDR5, and rely on conventional PC DDR5 memory in the SO-DIMM or CAMM2 form-factors. Besides the CPU core count consisting exclusively of full-sized "Zen 5" cores, the main flex for "Fire Range" over "Strix Point" will be its 28-lane PCIe Gen 5 root-complex, which can wire out the fastest discrete mobile GPUs, as well as drive multiple M.2 NVMe slots with Gen 5 wiring, and other high-bandwidth devices, such as Thunderbolt 4, USB4, or Wi-Fi 7 controllers wired directly to the processor.

AMD Strix Point SoC "Zen 5" and "Zen 5c" CPU Cores Have 256-bit FPU Datapaths

AMD in its architecture deep-dive Q&A session with the press, confirmed that the "Zen 5" and "Zen 5c" cores on the "Strix Point" silicon only feature 256-bit wide FPU data-paths, unlike the "Zen 5" cores in the "Granite Ridge" Ryzen 9000 desktop processors. "The Zen 5c used in Strix has a 256-bit data-path, and so does the Zen 5 used inside of Strix," said Mike Clark, AMD corporate fellow and chief architecture of the "Zen" CPU cores. "So there's no delta as you move back and forth [thread migration between the Zen 5 and Zen 5c complexes] in vector throughput," he added.

It doesn't seem like AMD disabled a physically available feature, but rather, the company developed a variant of both the "Zen 5" and "Zen 5c" cores that physically lack the 512-bit data-paths. "And you get the area advantage to be able to scale out a little bit more," Clark continued. This suggests that the "Zen 5" and "Zen 5c" cores on "Strix Point" are physically smaller than the ones on the 4 nm "Eldora" 8-core CCD that is featured in "Granite Ridge" and some of the key models of the upcoming 5th Gen EPYC "Turin" server processors.

Ryzen 9000 Chip Layout: New Details Announced

AMD "Granite Ridge" is codename for the four new Ryzen 9000 series desktop processors the company plans to launch on July 31, 2024. The processor is built in the Socket AM5 package, and is meant to be backwards compatible with AMD 600-series chipset motherboards, besides the new 800-series chipset ones that will launch alongside. "Granite Ridge" is a chiplet-based processor, much like the Ryzen 7000 "Raphael," Ryzen 5000 "Vermeer," and Ryzen 3000 "Matisse." AMD is carrying over the 6 nm client I/O die over from "Raphael" in an effort to minimize development costs, much in the same way it carried over the 12 nm cIOD for "Vermeer" from "Matisse."

The SoC I/O features of "Granite Ridge" are contemporary, with its awesome 28-lane PCI-Express Gen 5 root complex that allows a PCI-Express 5.0 x16, two CPU-attached M.2 Gen 5 slots, and a Gen 5 x4 chipset bus. There's also a basic integrated graphics solution based on the older RDNA 2 graphics architecture; which should make these processors fit for all use-cases that don't need discrete graphics. The iGPU even has multimedia accelerators, an audio coprocessor, a display controller, and USB 3.2 interfaces from the processor.

FinalWire Releases AIDA64 v7.35 with New CheckMate 64-bit Benchmark

FinalWire Ltd. today announced the immediate availability of AIDA64 Extreme 7.35 software, a streamlined diagnostic and benchmarking tool for home users; the immediate availability of AIDA64 Engineer 7.35 software, a professional diagnostic and benchmarking solution for corporate IT technicians and engineers; the immediate availability of AIDA64 Business 7.35 software, an essential network management solution for small and medium scale enterprises; and the immediate availability of AIDA64 Network Audit 7.35 software, a dedicated network audit toolset to collect and manage corporate network inventories. The new AIDA64 update introduces a new 64-bit CheckMate benchmark, AVX-512 accelerated benchmarks for AMD Ryzen AI APU, and supports the latest graphics and GPGPU computing technologies by AMD, Intel and NVIDIA.

DOWNLOAD: FinalWire AIDA64 v7.35 Extreme

AMD "Strix Halo" Processor Boosts up to 5.35 GHz, Geekbenched

AMD's upcoming "Strix Halo" mobile processor that features up to 16 "Zen 5" CPU cores and a powerful iGPU with 40 compute units, is beginning to surface in online benchmark databases. We've gone into the juicy technical bits about the processor in our older articles, but put simply, it is a powerful mobile processor meant to square off against the likes of the Apple M3 Pro and M3 Max. A chiplet-based processor, much like the upcoming "Granite Ridge" desktop processor and "Fire Range" mobile processor, "Strix Halo" features up to 16 full-sized "Zen 5" cores, as it uses up to two of the same "Eldora" CCDs as them; but wired to a large I/O die that contains the oversized iGPU, and an NPU, besides the memory controllers. The iGPU has 40 compute units (2,560 stream processors), and is based on the RDNA 3.5 graphics architecture, while the NPU is the same 50 TOPS-class unit carried over from "Strix Point."

A prototype HP laptop powered by a "Strix Halo" processor that uses a single 8-core "Zen 5" CCD, was spied on the web. This chip has eight full-sized "Zen 5" cores that share a 32 MB L3 cache. The iGPU on the I/O die has its own 32 MB Infinity Cache memory that cushions memory transfers. In our older reports, we speculated as to what the memory interface of "Strix Halo" would be. It turns out that the chip exclusively features a 256-bit wide LPDDR5X memory interface, which is double the bus width of "Strix Point." This is essentially what a "quad-channel DDR5" memory interface would be, and AMD is using a memory speed standard of at least LPDDR5X-8000. From the machine's point of view, this would be just a couple of hardwired LPDDR5X chips, or a pair of LPCAMM 2 modules. Back to the benchmarks, and we are shown a single-thread CPU score of 2099 to 2177 points, and a multithreaded score ranging between 5477 points to 13993 points. The laptop was tested with an unknown version and distribution of Linux. The CPU cores are shown boosting up to 5.35 GHz.

AMD Granite Ridge and Strix Point Zen 5 Die-sizes and Transistor Counts Confirmed

AMD is about give the new "Zen 5" microarchitecture a near-simultaneous launch across both its client segments—desktop and mobile. The desktop front is held by the Ryzen 9000 "Granite Ridge" Socket AM5 processors; while Ryzen AI 300 "Strix Point" powers the company's crucial effort to capture Microsoft Copilot+ AI PC market share. We recently did a technical deep-dive on the two. HardwareLuxx.de scored two important bits of specs for both processors in its Q&A interaction with AMD—die sizes and transistor counts.

To begin with, "Strix Point" is a monolithic silicon, which is confirmed to be built on the TSMC N4P foundry node (4 nm). This is a slight upgrade over the N4 node that the company built its previous generation "Phoenix" and "Hawk Point" processors on. The "Strix Point" silicon measures 232.5 mm² in area, which is significantly larger than the 178 mm² of "Hawk Point" and "Phoenix." The added die area comes from there being 12 CPU cores instead of 8, and 16 iGPU compute units instead of 12; and a larger NPU. There are many other factors, such as the larger 24 MB CPU L3 cache; and the sizes of the "Zen 5" and "Zen 5c" cores themselves.

AMD "Strix Halo" a Large Rectangular BGA Package the Size of an LGA1700 Processor

Apparently the AMD "Strix Halo" processor is real, and it's large. The chip is designed to square off against the likes of the Apple M3 Pro and M3 Max, in letting ultraportable notebooks have powerful graphics performance. A chiplet-based processor, not unlike the desktop socketed "Raphael," and mobile BGA "Dragon Range," the "Strix Halo" processor consists of one or two CCDs containing CPU cores, wired to a large die, that's technically the cIOD (client I/O die), but containing an oversized iGPU, and an NPU. The point behind "Strix Halo" is to eliminate the need for a performance-segment discrete GPU, and conserve its PCB footprint.

According to leaks by Harukaze5719, a reliable source with AMD leaks, "Strix Halo" comes in a BGA package dubbed FP11, measuring 37.5 mm x 45 mm, which is significantly larger than the 25 mm x 40 mm size of the FP8 BGA package that the regular "Strix Point," "Hawk Point," and "Phoenix" mobile processors are built on. It is larger in area than the 40 mm x 40 mm FL1 BGA package of "Dragon Range" and upcoming "Fire Range" gaming notebook processors. "Strix Halo" features one or two of the same 4 nm "Zen 5" CCDs featured on the "Granite Ridge" desktop and "Fire Range" mobile processors, but connected to a much larger I/O die, as we mentioned.

DDR5-6400 Confirmed as Sweetspot Speed of Ryzen 9000 "Zen 5" Desktop Processors

AMD's upcoming Ryzen 9000 series "Granite Ridge" desktop processors based on the "Zen 5" microarchitecture will see a slight improvement in memory overclocking capabilities. A chiplet-based processor, just like the Ryzen 7000 "Raphael," "Granite Ridge" combines one or two "Zen 5" CCDs, each built on the TSMC 4 nm process, with a client I/O die (cIOD) built on the 6 nm node. The cIOD of "Granite Ridge" appears to be almost identical to that of "Raphael." This is the chiplet that contains the processor's DDR5 memory controllers.

As part of the update, Ryzen 9000 "Granite Ridge" should be able to run DDR5-6400 with a 1:1 ratio between the MCLK and FCLK domains. This is a slight increase from the DDR5-6000 sweetspot speed of Ryzen 7000 "Raphael" processors. AMD is reportedly making it possible for motherboard manufacturers and prebuilt OEMs to enable a 1:2 ratio, making it possible to run high memory speeds such as DDR5-8000, although performance returns with memory speeds would begin to diminish beyond the DDR5-6400 @ 1:1 setting. Memory manufacturers should launch a new wave of DDR5 memory kits with AMD EXPO profiles for DDR5-6400.

AMD to Revise Specs of Ryzen 7 9700X to Increase TDP to 120W, to Beat 7800X3D

AMD's Ryzen 9000 "Granite Ridge" family of Socket AM5 desktop processors based on the "Zen 5" microarchitecture arrive in July, with four processor models in the lead—the 9950X 16-core, the 9900X 12-core, the 9700X 8-core, and the 9600X 6-core. AMD is building the CCDs (CPU core dies) of these processors on the slightly newer 4 nm foundry node, compared to the 5 nm node that the Ryzen 7000 series "Raphael" processors based on "Zen 4" are built on; and generally lowered the TDP values of all but the top 16-core part. The company is reportedly reconsidering these changes, particularly in wake of company statements that the 9000X series may not beat the 7000X3D series in gaming performance, which may have sullied the launch, particularly for gamers.

From the company's Computex 2024 announcement of the Ryzen 9000 series, the 9950X has the same 170 W TDP as its predecessor, the 7950X. The 9900X 12-core part, however, comes with a lower 120 W TDP compared to the 170 W of the 7900X. Things get interesting with the 8-core and 6-core parts. Both the 9700X 8-core, and the 9600X 6-core chips come with 65 W TDP. The 9700X succeeds the 7700X, which came with a 105 W TDP, while the 9600X succeeds the 7600X that enjoys the same 105 W TDP. The TDP and package power tracing (PPT) values of an AMD processor are known to affect CPU boost frequency residence, particularly in some of the higher core-count SKUs. Wccftech reports that AMD is planning to revise the specifications of at least the Ryzen 7 9700X.

Retailers Leaked AMD Zen 5 Release Date and Prices

AMD's Zen 5 Ryzen 9000 "Granite Ridge" series desktop processors are expected to be released on July 31st. The Ryzen AI 300 "Strix Point" series notebooks will hit stores earlier, on July 15th. This information comes from product listings on various e-commerce sites, as reported by ITHome and Videocardz. Additionally, a BestBuy listing shows one ASUS laptop with a Ryzen AI 300 "Strix Point" CPU launching on July 15th, ahead of the desktop processor release.

ITHome also reported potential retail prices for the AMD Ryzen 9 series CPUs, at least for the Philippine market. Worldwide prices may be lower or higher depending on taxes in each region.
  • Ryzen 9 9950X: $648
  • Ryzen 9 9900X: $597
  • Ryzen 7 9700X: $409
  • Ryzen 5 9600X: $315

AMD Says Ryzen 9000 Series Won't Beat 7000X3D Series at Gaming

AMD's upcoming Ryzen 9000 "Granite Ridge" desktop processors based on the "Zen 5" microarchitecture won't beat the Ryzen 7000X3D series at gaming workloads, said Donny Woligroski, the company's senior technical marketing manager, in an interview with Tom's Hardware. The new "Zen 5" chips, such as the Ryzen 7 9700X and Ryzen 9 9950X, will come close to the gaming performance of the 7800X3D and 7950X3D, but won't quite beat it. The new processors, however, will offer significant generational performance uplifts in productivity workloads, particularly multithreaded workloads that use vector extensions such as VNNI and AVX512. The Ryzen 7 7800X3D remains the fastest gaming desktop processor you can buy, it edges out even Intel's Core i9-14900KS, in our testing.

Given this, we expect the gaming performance of processors like the Ryzen 7 9700X and Ryzen 9 9950X to end up closer to those of the Intel Core i9-13900K or i9-14900K. Gamers with a 7000X3D series chip or even a 14th Gen Core i7 or Core i9 chip don't have much to look forward to. AMD confirmed that it's already working on a Ryzen 9000X3D series—that's "Zen 5" with 3D V-cache technology, and is sounds confident of holding on to the title of having the fastest gaming processors. This doesn't seem implausible.

AMD Zen 5 Storms into Gaming Desktops with Ryzen 9000 "Granite Ridge" Processors

AMD today announced its much awaited Ryzen 9000 series desktop processors. Built in the Socket AM5 package, and drop-in compatible with all current AM5 motherboards with a BIOS update, the processors are based on the new "Zen 5" CPU microarchitecture. The operational part of the processor, the CPU complex dies (CCDs), are built on the 4 nm process, wired to a 6 nm I/O die. AMD didn't get down into the nuts and bolts of the microarchitecture, but briefly mentioned an impressive 16% IPC increase over "Zen 4." Coupled with the fact that the first wave of processors lack 3D V-cache and can sustain higher boost frequencies and TDP, processors in the series should beat the Ryzen 7 7800X3D in gaming performance, which also means that AMD has beaten the 14th Gen Core "Raptor Lake Refresh" processor series by a significant margin.

The 16% IPC increase over "Zen 4" is backed by branch prediction improvements, wider pipelines and vectors, and deeper window sizes across the core design, for more parallelism. The core also features doubling in instruction bandwidth for front-end instructions, FPU to L1, and L1 to L2 data bandwidth, and a redesigned FPU to double AI performance and AVX512 throughput. The company hasn't put out a block design for "Zen 5," and we'll learn more about it in the run-up to the market availability of these chips some time in July 2024.

AMD Zen 5 Powered Ryzen AI 300 Series Mobile Processors Supercharge Next Gen Copilot+ AI PCs

AMD today launched its Ryzen AI 300 series mobile processors, codenamed "Strix Point." These chips implement a combination of the AMD "Zen 5" microarchitecture for the CPU cores, the XDNA 2 architecture for its powerful new NPU, and the RDNA 3+ graphics architecture for its 33% faster iGPU. The new "Zen 5" microarchitecture provides a 16% generational IPC uplift over "Zen 4" on the backs of several front-end enhancements, wider execution pipelines, more intra core bandwidth, and a revamped FPU that doubles performance of AI and AVX-512 workloads. AMD didn't go in-depth with the microarchitecture, but the broad points of "Zen 5" are detailed in our article for the Ryzen 9000 "Granite Ridge" desktop processors. Not only is AMD using these faster "Zen 5" CPU cores, but also increased the CPU core count by 50%, for a maximum of 12-core/24-thread.

The "Strix Point" monolithic silicon is built on the 4 nm foundry node, and packs a CPU core complex (CCX) with 12 CPU cores, four of these are "Zen 5," which can achieve the highest possible boost frequencies, the other eight are "Zen 5c" cores that feature an identical IPC and the full ISA, including support for SMT; but don't boost as high as the "Zen 5" cores. AMD is claiming a productivity performance increase ranging between 4% and 73% for its top model based in the series, when compared to Intel's Core Ultra 9 185H "Meteor Lake" processor. The iGPU sees its compute unit (CU) count go all the way up to 16 from 12 in the previous generation, and this yields a claimed 33% increase in iGPU gaming performance compared to the integrated Arc graphics of the Core Ultra 9 185H. Lastly, the XDNA 2 NPU sees more that triple the AI inference performance to 50 AI TOPS, compared to the 16 TOPS of the Ryzen 8040 "Hawk Point" processor, and 12 TOPS of Core Ultra "Meteor Lake." This makes the processor meet Microsoft's Copilot+ AI PC requirements.

AMD Zen 5 Chiplet Built on 4 nm, "Granite Ridge" First Model Numbers Leaked

An alleged company slide by motherboard maker GIGABYTE leaked a few interesting tidbits about the upcoming AMD Ryzen 9000 "Granite Ridge" Socket AM5 desktop processor powered by the "Zen 5" microarchitecture. To begin with, we're getting our first confirmation that the "Zen 5" common CCD used on "Granite Ridge" desktop processors and future EPYC "Turin" server processors, is built on the 4 nm EUV foundry node by TSMC, an upgrade from the 5 nm EUV node that the "Zen 4" CCD is built on. This could be the same version of the TSMC N4 node that AMD had been using for its "Phoenix" and "Hawk Point" mobile processors.

AMD is likely carrying over the client I/O die (cIOD) from the "Raphael" processor. This is built on the TSMC 6 nm DUV node. It packs a basic iGPU based on RDNA 2 with 2 compute units; a dual-channel DDR5 memory controller, and a 28-lane PCIe Gen 5 root complex, besides some SoC connectivity. AMD is rumored to be increasing the native DDR5 speeds for "Granite Ridge," up from the DDR5-5200 JEDEC-standard native speed, and DDR5-6000 "sweetspot" speed of "Raphael," so the cIOD isn't entirely the same.

AMD Ryzen 9000 Zen 5 Single Thread Performance at 5.80 GHz Found 19% Over Zen 4

An AMD Ryzen 9000 "Granite Ridge" desktop processor engineering sample with a maximum boost frequency of 5.80 GHz was found to offer an astonishing 19% higher single-threaded performance increase over an AMD Ryzen 9 7950X. "Granite Ridge" is codename for the Socket AM5 desktop processor family that implements the new "Zen 5" CPU microarchitecture. The unnamed "Granite Ridge" processor comes with an OPN code of 100-0000001290. Its CPU core count is irrelevant, as the single-threaded performance is in question here. The processor boosts up to 5.80 GHz, which means the core handling the single-threaded benchmark workload is achieving this speed. This speed is 100 MHz higher than the 5.70 GHz that the Ryzen 9 7950X processor based on the "Zen 4" architecture, boosts up to.

The single-threaded benchmark in question is the CPU-Z Bench. The mostly blurred out CPU-Z screenshot that reveals the OPN also mentions a processor TDP of 170 W, which means this engineering sample chip is either 12-core or 16-core. The chip posts a CPU-Z Bench single-thread score of 910 points, which matches that of the Intel Core i9-14900K with its 908 points. You've to understand that the i9-14900K boosts one of its P-cores to 6.00 GHz, to yield the 908 points that's part CPU-Z's reference scores. So straight off the bat, we see that "Zen 5" has a higher IPC than the "Raptor Cove" P-core powering the i9-14900K. Its gaming performance might end up higher than the Ryzen 7000 X3D family.

Many Thanks to TumbleGeorge for the tip.

AMD Ryzen 9000 Zen 5 "Granite Ridge" Desktop Processors Launch Late-July

AMD's next-generation Ryzen 9000 series "Granite Ridge" desktop processors based on the "Zen 5" microarchitecture, is rumored to launch in late-July, 2024, according to multiple sources in the ChipHell tech forums. The first four SKUs in the processor series will include one each of 16-core, 12-core, 8-core, and 6-core, spanning the Ryzen 9, Ryzen 7, and Ryzen 5 series, just like the company's Ryzen 7000 series debut. The company could unveil these processors in its 2024 Computex keynote address early next month, talking about their features and performance in broad strokes, while we get technical previews in the run-up to the late-July launch.

A late-July launch of the Ryzen 9000 series "Granite Ridge" processors should also mean that the various motherboard manufacturers will showcase their upcoming motherboards based on the AMD X870 desktop chipset at Computex. Ryzen 9000 series are built in the existing Socket AM5 package, and should be compatible with existing AMD 600-series chipset motherboards. In fact, most motherboard vendors have already released UEFI firmware updates that include Ryzen 9000 series processor compatibility. Those buying a Ryzen 9000 series processor with an AMD 600-series chipset motherboard can simply take advantage of the USB BIOS Flashback feature that's available on most motherboards, including the entry-level ones.

AMD Promises Next-Generation Product Announcements in its Computex Keynote

AMD on Monday said that its 2024 Computex Keynote address slated for June 3, will see a slew of next-generation product announcements. "Join us as Dr. Lisa Su delivers the Computex 2024 opening keynote and shares the latest on how AMD and our partners are pushing the envelope with our next generation of high-performance PC, data center and AI solutions," the brief release said.

AMD is widely expected to unveil its next-generation Ryzen 9000 "Strix Point" mobile processors for AI PCs capable of powering the recently announced Microsoft Copilot+, its next-generation Ryzen 9000 "Granite Ridge" desktop processors, its 5th Generation EPYC "Turin" server processors, and possibly even its next-generation Radeon RX RDNA 4 generation. At the heart of all its processor announcements is the new "Zen 5" CPU microarchitecture that's expected to introduce an over 10% IPC improvement with significant improvements in AVX512 performance over "Zen 4," which should benefit certain kinds of AI workloads.

AMD to Discontinue Windows 10 Support for its Ryzen 9000 "Strix Point" Mobile Processors

AMD is rumored to be discontinuing driver support for the Windows 10 operating system for its next-generation mobile processors, starting with the upcoming Ryzen 9000 "Strix Point" (and possibly "Strix Halo" and other chips from the generation). This would mean a lack of official drivers for the XDNA 2 NPU, SoC components, and possibly even the iGPU. This who know their way around manual driver installation might have some luck getting the Windows 11 drivers to work on Windows 10, but for the most part, notebooks and pre-built SFF desktops powered by these chips will not come with Windows 10 preinstalled, since there won't be any official drivers from AMD.

The CPU of Ryzen 9000 "Strix Point" processors should still very much work with Windows 10. This however doesn't cover the upcoming Ryzen 9000 "Granite Ridge" desktop processors, which have minimal hardware that need drivers, except for the basic iGPU they pack. Microsoft is discontinuing Windows 10 from regular updates on October 14, 2025. Those who want to hold on to the operating system need to pay for extended security update plans that get progressively pricier with each year.

AMD "Strix Point" Mobile Processor Confirmed 12-core/24-thread, But Misses Out on PCIe Gen 5

AMD's next-generation Ryzen 9000 "Strix Point" mobile processor, which succeeds the current Ryzen 8040 "Hawk Point" and Ryzen 7040 "Phoenix," is confirmed to feature a CPU core-configuration of 12-core/24-thread, according to a specs-leak by HKEPC citing sources among notebook OEMs. It appears like Computex 2024 will be big for AMD, with the company preparing next-gen processor announcements across the desktop and notebook lines. Both the "Strix Point" mobile processor and "Granite Ridge" desktop processor debut the company's next "Zen 5" microarchitecture.

Perhaps the biggest takeaway from "Zen 5" is that AMD has increased the number of CPU cores per CCX from 8 in "Zen 3" and "Zen 4," to 12 in "Zen 5." While this doesn't affect the core-counts of its CCD chiplets (which are still expected to be 8-core), the "Strix Point" processor appears to use one giant CCX with 12 cores. Each of the "Zen 5" cores has a 1 MB dedicated L2 cache, while the 12 cores share a 24 MB L3 cache. The 12-core/24-thread CPU, besides the generational IPC gains introduced by "Zen 5," marks a 50% increase in CPU muscle over "Hawk Point." It's not just the CPU complex, even the iGPU sees a hardware update.

AMD "Strix Halo" Zen 5 Mobile Processor Pictured: Chiplet-based, Uses 256-bit LPDDR5X

Enthusiasts on the ChipHell forum scored an alleged image of AMD's upcoming "Strix Halo" mobile processor, and set out to create some highly plausible schematic slides. These are speculative. While "Strix Point" is the mobile processor that succeeds the current "Hawk Point" and "Phoenix" processors; "Strix Halo" is in a category of its own—to offer gaming experiences comparable to discrete GPUs in the ultraportable form-factor where powerful discrete GPUs are generally not possible. "Strix Halo" also goes head on against Apple's M3 Max and M3 Pro processors powering the latest crop of MacBook Pros. It has the same advantages as a single-chip solution, as the M3 Max.

The "Strix Halo" silicon is a chiplet-based processor, although very different from "Fire Range". The "Fire Range" processor is essentially a BGA version of the desktop "Granite Ridge" processor—it's the same combination of one or two "Zen 5" CCDs that talk to a client I/O die, and is meant for performance-thru-enthusiast segment notebooks. "Strix Halo," on the other hand, use the same one or two "Zen 5" CCDs, but with a large SoC die featuring an oversized iGPU, and 256-bit LPDDR5X memory controllers not found on the cIOD. This is key to what AMD is trying to achieve—CPU and graphics performance in the league of the M3 Pro and M3 Max at comparable PCB and power footprints.

MSI First with Motherboard BIOS that Supports Ryzen 9000 "Zen 5" Processors

In yet another clear sign that we could see some action from AMD on the next-gen desktop processor front this Computex, motherboard maker MSI released its first beta UEFI firmware update that packs an AGESA microcode that reportedly supports the upcoming AMD Ryzen 9000 "Granite Ridge" processors. The "7D74v1D2 beta" firmware update for the MSI MPG B650 Carbon Wi-Fi motherboard encapsulates AGESA ComboPI 1.1.7.0 patch-A, with the description that it supports a "next-gen CPU," a reference to the Ryzen 9000 "Granite Ridge."

A successor to the Ryzen 7000 Raphael, the Ryzen 9000 Granite Ridge introduces the new "Zen 5" microarchitecture to the desktop platform, with CPU core counts remaining up to 16-core/32-thread. The new microarchitecture is expected to introduce generational increase in IPC, as well as improve performance of certain exotic workloads such as AVX-512. The processors are said to be launching alongside the new AMD 800-series motherboard chipset. If AMD is using Computex as a platform to showcase these processors, it's likely we might see the first of these motherboards as well.

Intel Xeon Scalable Gets a Rebrand: Intel "Xeon 6" with Granite Rapids and Sierra Forest Start a New Naming Scheme

During the Vision 2024 event, Intel announced that its upcoming Xeon processors will be branded under the new "Xeon 6" moniker. This rebranding effort aims to simplify the company's product stack and align with the recent changes made to its consumer CPU naming scheme. In contrast to the previous "x Generation Xeon Scalable", the new branding aims to simplify the product family. The highly anticipated Sierra Forest and Granite Ridge chips will be the first processors to bear the Xeon 6 branding, and they are set to launch in the coming months. Intel has confirmed that Sierra Forest, designed entirely with efficiency cores (E-cores), remains on track for release this quarter. Supermicro has already announced early availability and remote testing programs for these chips. Intel's Sierra Forest is set to deliver a substantial leap in performance. According to the company, it will offer a 2.4X improvement in performance per watt and a staggering 2.7X better performance per rack compared to the previous generation. This means that 72 Sierra Forest server racks will provide the same performance as 200 racks equipped with older second-gen Xeon CPUs, leading to significant power savings and a boost in overall efficiency for data centers upgrading their system.

Intel has also teased an exciting feature in its forthcoming Granite Ridge processors-support for the MXFP4 data format. This new precision format, backed by the Open Compute Project (OCP) and major industry players like NVIDIA, AMD, and Arm, promises to revolutionize performance. It could reduce next-token latency by up to 6.5X compared to fourth-gen Xeons using FP16. Additionally, Intel stated that Granite Ridge will be capable of running 70 billion parameter Llama-2 models, a capability that could open up new possibilities in data processing. Intel claims that 70 billion 4-bit models run entirely on Xeon in just 86 milliseconds. While Sierra Forest is slated for this quarter, Intel has not provided a specific launch timeline for Granite Ridge, stating only that it will arrive "soon after" its E-core counterpart. The Xeon 6 branding aims to simplify the product stack and clarify customer performance tiers as the company gears up for these major releases.

AMD Ryzen 9000 "Granite Ridge" Zen 5 Processor Pictured

An alleged picture of an unreleased AMD Ryzen 9000 series "Granite Ridge" desktop processor, just hit the wires. "Granite Ridge" is codename for the desktop implementation of the "Zen 5" microarchitecture, it succeeds the current Ryzen 7000 "Raphael" that's powered by "Zen 4." From what we're hearing, the CPU core counts of "Granite Ridge" continue to top out at 16. These chips will be built in the existing AMD Socket AM5 package, and will be compatible with existing AMD 600-series chipset motherboards, although the company is working on a new motherboard chipset to go with the new chips.

The alleged AMD engineering sample pictured below has an OPN 100-000001290-11, which is unreleased. This OPN also showed up on an Einstein@Home online database, where the distributed computing platform read it as having 16 threads, making this possibly an 8-core/16-thread SKU. The "Zen 5" microarchitecture is expected to provide a generational IPC increase over "Zen 4," but more importantly, offer a significant performance increase for AVX-512 workloads due to an updated FPU. AMD is expected to unveil its Ryzen 9000 series "Zen 5" processors at the 2024 Computex.

Alleged AMD Ryzen "Granite Ridge" Engineering Samples Pop Up in Shipping Manifests

Shipping manifests appear to be great sources of pre-release information—only a few hours ago, the existence of prototype AMD "Strix Point" and "Fire Range" mobile processors was highlighted by hardware sleuth harukaze5719. A related leak has appeared online fairly quickly after the discovery of laptop-oriented "Zen 5" chips. momomo_us joined in on the fun, with their exposure of speculated desktop silicon. Two brand-new AMD OPN codes have been linked to the upcoming "Granite Ridge" series of AM5 processors.

100-000001404-01 is likely an eight-core/ sixteen-thread "Zen 5" Ryzen CPU with a 170 W TDP—a stepping designation, B0, indicates engineering sample status. The other listing, 100-000001290-21, seems to be an A0-type engineering sample—leaked info suggests that this a six-core/twelve-thread (105 W TDP) next-gen mainstream desktop processor. AMD is likely nearing the finish line with its Ryzen 9000-series—a new generation of chipsets, including X870E, is reportedly in the pipeline. Additionally, VideoCardz posits that a refresh of 700-series boards could be on the cards. "Granite Range" CPUs are expected to retain the current-gen 6 nm client I/O die (cIOD), as sported by "Raphael" Ryzen 7000-series desktop processors.
Return to Keyword Browsing
Aug 14th, 2024 09:11 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts