News Posts matching #LPDDR4X

Return to Keyword Browsing

Intel Alder Lake-P Appears in Leaked Roadmap Featuring DDR5 & PCIe 5.0 Support

Intel is expected to announce their desktop Alder Lake processors later this month on October 28th and it would appear that laptop processors could enter production as early as November. These revelations come from a leaked roadmap published by Wccftech that lists the Alder Lake-P and Alder Lake-M processor families for launch in Q4 2021 and Q1 2022 respectively. The production window for Alder Lake-P opens November 8th and closes March 13th while for Alder Lake-M that period is from January 17th to April 17th.

The roadmap lists Alder Lake-P processors as featuring a TDP between 12 W to 45 W and Alder Lake-M covering 7 W to 15 W. The two platforms will both feature up to 96 Xe graphics Execution units along with Thunderbolt 4 and WiFi 6E connectivity. Alder Lake-P will include PCIe 5.0 and DDR5 support with no mention of DDR4 compatibility while Alder Lake-M will get PCIe 4.0 and LPDDR4X/LPDDR5. The mobile lineup is divided into 3 groups of which the flagship H55 was not mentioned in the roadmap indicating a post Q1 2022 release.

Explosive Growth in Automotive DRAM Demand Projected to Surpass 30% CAGR in Next Three Years, Says TrendForce

Driven by such factors as the continued development of autonomous driving technologies and the build-out of 5G infrastructure, the demand for automotive memories will undergo a rapid growth going forward, according to TrendForce's latest investigations. Take Tesla, which is the automotive industry leader in the application of autonomous vehicle technologies, as an example. Tesla has adopted GDDR5 DRAM products from the Model S and X onward because it has also adopted Nvidia's solutions for CPU and GPU. The GDDR5 series had the highest bandwidth at the time to complement these processors. The DRAM content has therefore reached at least 8 GB for vehicles across all model series under Tesla. The Model 3 is further equipped with 14 GB of DRAM, and the next-generation of Tesla vehicles will have 20 GB. If content per box is used as a reference for comparison, then Tesla far surpasses manufacturers of PCs and smartphones in DRAM consumption. TrendForce forecasts that the average DRAM content of cars will continue to grow in the next three years, with a CAGR of more than 30% for the period.

Intel "Alder Lake-P" Mobile Processor with 14 Cores (6 Big + 8 Little) Geekbenched

An Intel 12th Gen Core "Alder Lake-P" sample surfaced on the Geekbench online results database. The "Alder Lake" microarchitecture introduces heterogenous multi-core to the desktop platform, following its long march from Arm big.LITTLE in 2013, through to laptops with Intel's "Lakefield" in 2019. Intel will build both desktop- and mobile processors using the microarchitecture. The concept is unchanged from big.LITTLE. A processor has two kinds of cores—performance and low-power. Under lower processing loads, the low-power cores are engaged, and the performance cores are only woken up as needed. In theory, this brings about tremendous energy-efficiency gains, as the low-power cores operate within a much higher performance/Watt band than the high-performance cores.

The "Alder Lake" silicon features two kinds of cores—eight "Golden Cove" performance cores, and eight "Gracemont" low-power cores. The "Golden Cove" cores can be configured with HyperThreading (2 logical processors per core). Intel's product managers can create multiple combinations of performance and low-power cores, to achieve total core counts of up to 16, and logical processor counts of up to 24. This also warrants close attention to the composition of the core types, beyond an abstract core-count. A 14-core processor with 6 performance- and 8 low-power cores will perform vastly different from a 14-core processor with 8 performance- and 6 low-power cores. One way to derive core counts is by paying attention to the logical processor (thread) counts, as only the performance "Golden Cove" cores support HTT.

Schenker Announces VISION 15 Notebook: Intel Core i7-1165G7 Tiger Lake CPU, Touch Display

The SCHENKER VISION 15 is about to set new standards in the premium laptop segment. Featuring the recently introduced Core i7-1165G7 processor, the 15.6-inch laptop offers top-notch specifications and the highest quality workmanship, as its 15 mm slim unibody aluminium chassis is bursting with modern technology. This includes a touch display with maximum brightness of 450 nits, Thunderbolt 4, an M.2 SSD connected via PCI Express 4.0, charging options on both sides via USB-C and many additional, smart features. The reference character of this laptop does not come by chance: The development is based on a cooperation with Intel, which is responsible for the design of an optimal motherboard layout and cooling system. For this reason, the laptop also meets all standards of the Intel Evo platform.

Acer Announces Availability of New Swift 5 and Swift 3; Swift 5 Verified as An Intel Evo Platform

Acer today announced the availability of the new Swift 5 and Swift 3 notebook models featuring new 11th Gen Intel Core processors with Iris Xe graphics. The new Acer Swift 5 notebook is one of the industry's first to be verified through Intel's Project Athena innovation program, as Intel Evo platform laptop design, and designed to deliver incredibly responsive mobile performance and immersive features that improve the overall experience, including instant wake, Intel Iris Xe graphics, vibrant displays and the latest in connectivity. In addition, it features an all-day battery that can be fast-charged, yielding four hours of use from only a 30-minute charge.

The Acer Swift 3 notebook designs are a part of Intel's Project Athena innovation program and targeting verification, pending further tuning, to utilize the Intel Evo platform badge. "The new Acer Swift notebook lines represent a substantial leap forward in performance, responsiveness and usability for our customers who are cultivating a unique blend of work, life and passion-projects on-the-go," said James Lin, General Manager, Notebooks, IT Products Business, Acer Inc. "Acer took meticulous care to ensure that all aspects of the design were elevated to match the best-in-class experience the Intel Evo platform provides to help our customers achieve more."

Razer Announces the All New Blade Stealth 13 Gaming Ultrabook

Razer, the leading global lifestyle brand for gamers, today revealed the all-new Razer Blade Stealth 13, taking Ultrabook gaming to the next level. The Blade Stealth 13 is the first Ultrabook with a 13.3" 120Hz display, powered by the new NVIDIA GeForce GTX 1650 Ti GPU and a faster 25W variant of the Intel Core i7-1065G7 processor. The Blade Stealth 13 also packs a faster, more efficient keyboard and more efficient LPDDR4X memory, all within the signature matte black aluminium chassis.

"The Razer Blade Stealth 13 is the world's most powerful Ultrabook and we just made it better," said Brad Wildes, Senior Vice President of Razer's Systems Business Unit. "The new Razer Blade Stealth 13 introduces the next evolution of ultraportable gaming, providing users the perfect balance between fun and function."

GDP Win Max is an 8-inch Gaming Laptop with Intel's Ice Lake CPU

GDP, a company specializing in the creation of tiny laptops designed for gaming, has just announced the latest addition to its family of tiny notebooks - the GDP Win Max gaming laptop. This model is an 8-inch gaming laptop packing a lot for its size. On the outside, this laptop is equipped with joysticks on both sides, so there is even an option to directly play games using these joysticks instead of the built-in keyboard. The display of the device is an IPS screen that features a 1280×800 resolution, resulting in a 16:10 aspect ratio of the display. What's more important, however, is what is under the hood of the small body.

It is powered by Intel's latest Ice Lake CPU - the Intel Core i5-1035G7. Being a 4 core/ 8 threaded CPU with Gen11 Iris Plus 940 graphics it is accompanied by 16 GB of LPDDR4X RAM and 512 GB SSD. GDP has provided some of the benchmark results of this configuration which you can check out below, however, please take these with a grain of salt. As far as I/O goes, this small laptop is rather well equipped with plenty of ports. There is one Thunderbolt 3 port to connect to external GPU is it is needed. There is one USB Type-C 3.1 Gen2 port and two USB Type-A 3.1 Gen1 ports for the connection of external peripherals. If you wish to connect the laptop to the outside screen, there are options of HDMI, USB Type-C or Thunderbolt 3 ports for connection. A welcome addition to I/O is the inclusion of the RJ45 connector, meaning that if you have access to ethernet you can easily plug it into this laptop.
GDP Win Max GDP Win Max GDP Win Max Benchmarks GDP Win Max Benchmarks

ASUS Readies Zenbook 14 Model Combining Ryzen 4000 and GeForce MX350 Graphics

ASUS is giving finishing touches to the launch of a new Zenbook 14 (UX434IQ) model with a combination of a Ryzen 4000 "Renoir" processor and NVIDIA's entry-level GeForce MX350 discrete graphics. Although never pictured and with no confirmation of whether it gets the swanky ScreenPad (a color touchscreen that works like the notebook's trackpad); the combine surfaced in a Futuremark database submission.

The Zenbook 14 (UX434IQ) combines an AMD Ryzen 7 4700U (8-core/8-thread) processor with NVIDIA GeForce MX350 discrete graphics, and more interestingly, 16 GB of LPDDR4x-4266 memory. The "Pascal" based MX350 graphics features 640 CUDA cores, and a 64-bit GDDR5 memory interface holding 2 GB of memory. It's marketed to offer a 2.5x performance uplift against an Intel Gen 9.5 iGPU, but we're not sure if it makes even a 1.5x uplift over the iGPU of the 4700U (448 "Vega" stream processors, 1600 MHz engine clock, plenty of memory bandwidth at its disposal thanks to LPDDR4x). The notebook also packs a decent Samsung PM981 1 TB NVMe SSD.

Apple's A12Z SoC Features the Same A12X Silicon

With an introduction of new iPad Pro tablets, Apple has brought another new silicon to its offerings in the form of A12Z SoC. Following the previous king in tablet space, the A12X SoC, Apple has decided to update its silicon and now there is another, more advanced stepping in form of an A12Z SoC. Thanks to the report from TechInsights, their analysis has shown that the new SoC used in Apple's devices is pretty much the same compared to the A12X SoC of last year, except the GPU used. Namely, the configuration of A12X is translated into the A12Z - there are four Apple Vortex and four Apple Tempest cores for the CPU. There is a 128-bit memory bus designed for LPDDR4X memory, the same as the A12X.

What is different, however, is the GPU cluster configuration. In A12X there was a cluster filled with 7 working and one disabled A12-gen GPU core. In A12Z SoC all of the 8 GPUs present are enabled and working, and they are also of the same A12 generation. The new SoC is even built using the same N7 7 nm manufacturing process from TSMC. While we don't know the silicon stepping revision of the A12Z, there aren't any new features besides the additional GPU core.
Apple A12Z Bionic

Intel Core i5-L16G7 is the first "Lakefield" SKU Appearance, Possible Prelude to New Nomenclature?

Intel Core i5-L16G7 is the first commercial SKU that implements Intel's "Lakefield" heterogenous x86 processor architecture. This 5-core chip features one high-performance "Sunny Cove" CPU core, and four smaller "Tremont" low-power cores, with an intelligent scheduler balancing workloads between the two core types. This is essentially similar to ARM big.LITTLE. The idea being that the device idles most of the time, when lower-powered CPU cores can hold the fort; performance cores kick in only when really needed, until which time they remain power-gated. Thai PC enthusiast TUM_APISAK discovered the first public appearance of the i5-L16G7 in an unreleased Samsung device that has the Userbenchmark device ID string "SAMSUNG_NP_767XCL."

Clock speeds of the processor are listed as "1.40 GHz base, with 1.75 GHz turbo," but it's possible that the two core types have different clock-speed bands, just like the cores on big.LITTLE SoCs. Other key components of "Lakefield" include an iGPU based on the Gen11 graphics architecture, and an LPDDR4X memory controller. "Lakefield" implements Foveros packaging, in which high-density component dies based on newer silicon fabrication nodes are integrated with silicon interposers based on older fabrication processes, which facilitate microscopic high-density wiring between the dies. In case of "Lakefield," the Foveros package features a 10 nm "compute field" die sitting atop a 22 nm "base field" interposer.

A Walk Through SK Hynix at CES 2020: 4D NAND SSDs and DDR5 RDIMMs

Korean DRAM and NAND flash giant SK Hynix brought its latest memory innovations to the 2020 International CES. The star attraction at their booth was the "4D NAND" technology, and some of the first client-segment SSDs based on it. As a concept, 4D NAND surfaced way back in August 2018, and no, it doesn't involve the 4th dimension. Traditional 3D NAND chips use charge-trap flash (CTF) stacks spatially located next to a peripheral block that's responsible for wiring out all of those CTF stacks. In 4D NAND, the peripheral block is stacked along with the CTF stack itself, conserving real-estate on the 2-D plane (which can then be spent on increasing density). We caught two 128-layer 4D NAND-based client-segment drives inbound for 2020, the Platinum P31 M.2 NVMe, and Gold P31 M.2 NVMe. The already launched Gold S31 SATA drive was also there.

SK hynix Displays its Semiconductor Technologies Leading the 4th Industrial Revolution

SK hynix Inc. presents its innovative semiconductor technologies leading the 4th Industrial Revolution at CES 2020, the world's largest trade show for IT and consumer electronics in Las Vegas, USA, from January 7-10, 2020. In line with its "Memory Centric World" theme, SK hynix depicts a futuristic city which effectively utilizes enormous amounts of data. The Company also showcases its semiconductor solutions across six crucial business fields - artificial intelligence (AI), augmented reality (AR) / virtual reality (VR), automotive, Internet of Things (IoT), big data and 5G.

Headlining at CES 2020 are SK hynix's memory solutions including HBM2E, DDR5 for servers, and SSD, which are already highly regarded and widely used in 4th industrial fields such as 5G and AI for their stability, speed, power consumption and density excellence. Other cutting-edge products set to make headlines in January are the Company's highly durable LPDDR4X and eMMC 5.1, which are optimized for automobiles. What's more, SK hynix is displaying its LPDDR5 and UFS that enhance the performance of 5G smartphones as well as CIS (CMOS Image Sensor) which is essential in establishing effective environments for AR/VR and IoT.

AMD Announces Ryzen 4000 Mobile Processors: 4800U and 4800H

AMD today announced its Ryzen 4000-series mobile processors designed to compete with Intel's fastest, across both its 10th gen "Ice Lake" and "Comet Lake" mobile processors lines. At the heart of these processors is the 7 nm "Renoir" silicon, which doubles the CPU core count over the previous generation "Picasso," and improves IPC (single-thread performance) by a double-digit percentage. "Renoir" combines a CPU with 8 cores based on the "Zen 2" microarchitecture, with an iGPU that has the number-crunching machinery of "Vega," but with display- and multimedia-engines of "Navi." It is a monolithic piece of silicon with a dual-channel IMC that supports not just conventional DDR4 memory, but also fast LPDDR4X.

There are two distinct classes of Ryzen 4000 Mobile: U and H. The Ryzen 7 4800U, with its 15 W TDP, targets ultra-portable notebooks, and goes head-on against Intel's Core i7 "Ice Lake-U" processors, winning on the CPU front with its high core-count and IPC. The Ryzen 7 4800H, on the other hand, taps into the 45 W TDP headroom to dial up CPU and iGPU clock-speeds significantly, offering CPU performance that beats the desktop Core i7-9700K. It also introduces SmartShift, an iGPU + dGPU virtualization technology that lets your notebook dynamically switch between the two based on graphics load.

MSI Teases Evoke Line of Notebooks for Creators

MSI debuted the Evoke brand of hardware targeted at creators, with its Radeon RX 5700-series Evoke graphics cards. The company is now planning to extend the brand to a range of other products, beginning with notebooks. The company teased the design of what's allegedly the first Evoke branded notebook, which ships with a minimalist and durable design, and hardware tailored for content-creation applications. The company didn't tease its specs, but you can expect anything from Intel's 10th gen "Comet Lake-H" to AMD's Ryzen 4000 "Renoir" processors, and discrete graphics options that include RX 5500M "Navi" or even Max-Q RTX 20-series. Some of the higher trims could even leverage fast NVMe storage. MSI is expected to launch its Evolve notebooks on 7th January, 2020.

Intel "Tiger Lake-U" Processors Could Support LPDDR5 Memory

Intel's Core "Tiger Lake" microarchitecture could be a point of transition between DDR4 and DDR5 for the company. Prototypes of devices based on the ultra-compact "Tiger Lake-Y" SoC were earlier shown featuring LPDDR4X memory, although a new device, possibly a prototyping platform, in the regulatory queue with the Eurasian Economic Commission describes itself as featuring a "Tiger Lake-U" chip meant for thin and light notebooks and convertibles. This device features newer LPDDR5 memory, according to its regulatory filing.

LPDDR5 succeeds LPDDR4X as the industry's next low-power memory standard, offering data-rates of up to 6,400 MT/s (versus up to 4,266 MT/s of LPDDR4X), and consumes up to 30 percent less power. This prototype at the EEC is sure to be using unreleased LPDDR5 memory chips as DRAM majors Samsung and SK Hynix plan to ship their DDR5-based memory solutions only by the end of this year, although mass-production of the chips have already started at Samsung, in PoP form-factors. A successor to the 10th generation Core "Ice Lake," "Tiger Lake" will be Intel's second CPU microarchitecture designed for its 10 nm silicon fabrication node.

Samsung Begins Mass-production of 12GB LPDDR4X uMCP Memory Chips

Samsung Electronics, a world leader in advanced memory technology, today announced that it has begun mass producing the industry's first 12-gigabyte (GB) low-power double data rate 4X (LPDDR4X) UFS-based multichip package (uMCP). The announcement was made as part of the company's annual Samsung Tech Day at its Device Solutions' America headquarters in San Jose, California.

"Leveraging our leading-edge 24-gigabit (Gb) LPDDR4X chips, we can offer the highest mobile DRAM capacity of 12 GB not only for high-end smartphones but also for mid-range devices," said Sewon Chun, executive vice president of Memory Marketing at Samsung Electronics. "Samsung will continue to support our smartphone-manufacturing customers with on-time development of next-generation mobile memory solutions, bringing enhanced smartphone experiences to many more users around the globe."

AMD "Renoir" APU to Support LPDDR4X Memory and New Display Engine

AMD's next-generation "Renoir" APU, which succeeds the company's 12 nm "Picasso," will be the company's truly next-generation chip to feature an integrated graphics solution. It's unclear as of now, if the chip will be based on a monolithic die, or if it will be a multi-chip module of a 7 nm "Zen 2" chiplet paired with an enlarged I/O controller die that has the iGPU. We're getting confirmation on two key specs - one, that the iGPU will be based on the older "Vega" graphics architecture, albeit with an updated display engine to support the latest display standards; and two, that the processor's memory controller will support the latest LPDDR4X memory standard, at speeds of up to 4266 MHz DDR. In comparison, Intel's "Ice Lake-U" chip supports LPDDX4X up to 3733 MHz.

Code-lines pointing toward "Vega" graphics with an updated display controller mention the new DCN 2.1, found in AMD's new "Navi 10" GPU. This controller supports resolutions of up to 8K, DSC 1.2a, and new resolutions of 4K up to 240 Hz and 8K 60 Hz over a single cable, along with 30 bits per pixel color. The multimedia engine is also suitably updated to VCN 2.1 standard, and provides hardware-accelerated decoding for some of the newer video formats, such as VP9 and H.265 at up to 90 fps at 4K, and 8K up to 24 fps, and H.264 up to 150 fps at 4K. There's no word on when "Renoir" comes out, but a 2020 International CES unveil is likely.

Samsung Launches Highest-capacity Mobile DRAM

Samsung Electronics Co., Ltd., the world leader in advanced memory technology, today announced that it has begun mass producing the highest-capacity mobile DRAM - the industry's first 12-gigabyte (GB) low-power double data rate 4X (LPDDR4X) package - optimized for tomorrow's premium smartphones. Featuring higher capacity than most ultra-thin notebooks, the new mobile DRAM will enable smartphone users to take full advantage of all the features in next-generation smartphones.

"With mass production of the new LPDDR4X, Samsung is now providing a comprehensive lineup of advanced memory to power the new era of smartphones, from 12GB mobile DRAM to 512GB eUFS 3.0 storage," said Sewon Chun, executive vice president of Memory Marketing at Samsung Electronics. "Moreover, with the LPDDR4X, we're strengthening our position as the premium mobile memory maker best positioned to accommodate rapidly growing demand from global smartphone manufacturers."

Samsung Begins Mass Producing 2nd-Gen 10nm-Class, 16Gb LPDDR4X Mobile DRAM

Samsung Electronics, the world leader in advanced memory technology, today announced that it has begun mass producing the industry's first 2nd-generation of 10-nanometer-class (1y-nm), LPDDR4X (Low Power, Double Data Rate, 4X) DRAM to improve the efficiency and lower the battery drain of today's premium smartphones and other mobile applications. Compared to the mobile DRAM memory chips most used in current flagship mobile devices (1x-nm 16Gb LPDDR4X), the 2nd- generation LPDDR4X DRAM features up to a 10 percent power reduction while maintaining the same data rate of 4,266 megabits per second (Mb/s).

"The advent of 10nm-class mobile DRAM will enable significantly enhanced solutions for next-generation, flagship mobile devices that should first hit the market late this year or the first part of 2019." said Sewon Chun, senior vice president of Memory Sales & Marketing at Samsung Electronics. "We will continue to grow our premium DRAM lineup to lead the 'high-performance, high capacity, and low power' memory segment to meet the market demand and strengthen our business competitiveness."
Return to Keyword Browsing
Apr 4th, 2025 14:20 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts