Monday, February 1st 2021
Intel "Alder Lake-P" Mobile Processor with 14 Cores (6 Big + 8 Little) Geekbenched
An Intel 12th Gen Core "Alder Lake-P" sample surfaced on the Geekbench online results database. The "Alder Lake" microarchitecture introduces heterogenous multi-core to the desktop platform, following its long march from Arm big.LITTLE in 2013, through to laptops with Intel's "Lakefield" in 2019. Intel will build both desktop- and mobile processors using the microarchitecture. The concept is unchanged from big.LITTLE. A processor has two kinds of cores—performance and low-power. Under lower processing loads, the low-power cores are engaged, and the performance cores are only woken up as needed. In theory, this brings about tremendous energy-efficiency gains, as the low-power cores operate within a much higher performance/Watt band than the high-performance cores.
The "Alder Lake" silicon features two kinds of cores—eight "Golden Cove" performance cores, and eight "Gracemont" low-power cores. The "Golden Cove" cores can be configured with HyperThreading (2 logical processors per core). Intel's product managers can create multiple combinations of performance and low-power cores, to achieve total core counts of up to 16, and logical processor counts of up to 24. This also warrants close attention to the composition of the core types, beyond an abstract core-count. A 14-core processor with 6 performance- and 8 low-power cores will perform vastly different from a 14-core processor with 8 performance- and 6 low-power cores. One way to derive core counts is by paying attention to the logical processor (thread) counts, as only the performance "Golden Cove" cores support HTT.Back to the Geekbench v5.31 database entry, and we see a 14-core/20-thread "Alder Lake-P" processor. This chip features 6 performance "Golden Cove" cores, and 8 low-power "Gracemont" ones. As a mobile chip, it's paired with LPDDR4X memory, and its clock speed ranges between 800 MHz idle, and 4.70 GHz max Turbo Boost. The chip yields an OpenCL compute performance of 13438 points.
Source:
HotHardware
The "Alder Lake" silicon features two kinds of cores—eight "Golden Cove" performance cores, and eight "Gracemont" low-power cores. The "Golden Cove" cores can be configured with HyperThreading (2 logical processors per core). Intel's product managers can create multiple combinations of performance and low-power cores, to achieve total core counts of up to 16, and logical processor counts of up to 24. This also warrants close attention to the composition of the core types, beyond an abstract core-count. A 14-core processor with 6 performance- and 8 low-power cores will perform vastly different from a 14-core processor with 8 performance- and 6 low-power cores. One way to derive core counts is by paying attention to the logical processor (thread) counts, as only the performance "Golden Cove" cores support HTT.Back to the Geekbench v5.31 database entry, and we see a 14-core/20-thread "Alder Lake-P" processor. This chip features 6 performance "Golden Cove" cores, and 8 low-power "Gracemont" ones. As a mobile chip, it's paired with LPDDR4X memory, and its clock speed ranges between 800 MHz idle, and 4.70 GHz max Turbo Boost. The chip yields an OpenCL compute performance of 13438 points.
13 Comments on Intel "Alder Lake-P" Mobile Processor with 14 Cores (6 Big + 8 Little) Geekbenched
Mean while, I think AMD and their FPGA strategy mind will end up being a real banger in the long term. Imagine a CPU no longer CPU, but more like a GPU that's more like a CPU. And load in different micro instructions as needed... Just musing...
The main hurdle with the Big.Little concept will be marketing. I can just imagine the forum posts now: "I bought a 14 core CPU but it turned out to be a shitty 6+8 thing WTFFFF" There's really no limit to how dumb consumers can be and it will be a major hurdle to prevent backlash.
The Big.Little changes stuff like you say. 14 core big little mix is not the same as 12 core Big only lets say. If consumers are dumb enough to buy first and then thing about what they have bought then sure, there will be backlash.
I'd do that if I were Intel, if only to make life harder for the competition.
It might be a stupid idea but stupid ideas get patented all the time. Intel will have a hard time trying to file a patent now, well, if they haven't done that already.
Awesome. I can smell the progress. That's two bloodied turtles and two halved hares then. Brutal. More importantly there is no limit to the number of types and conventions Intel can mix and match now. Imagine, an i7 could be anything from a dual to an octacore now, its a marketing dream. Everything is premium. Didn't they get new stickers for Alder Lake too?
I have no doubt at all in my mind that a company like Intel will do similarly with CPU chips. At the end of the day price relative to performance is also a major part of what's important along with actual yields. You can have a great chip and virtually no supply and that's kind of a big problem to have just look at the GPU market the high end of the spectrum for GPU design is too wide a gap of price and performance that it's destroying the DIY PC market and gaming industry in general in a lot of ways. For every AAA developer there a lot more lesser known indie developers being hurt by the push towards higher and more expensive GPU's and less progress at the lower end and mid range. The mining situation doesn't help either, but it's exaggerated by high end GPU's in a sense because the supply volume issue. They'd have a easier time ensuring more GPU's get into the hands of more people rather than mining bot farms.
It is obvious Intel will improve it but I look at it as it is now. There's a reason for Intel to move big.little and I'm 100% sure it was efficiency and power usage. definitely not higher performance.