LN2 Cooled Apple M4 Chip Surpasses Single-Core Performance of M3 Max and M2 Ultra
According to Geekerwan, Apple's latest M4 silicon has achieved a remarkable milestone by using liquid nitrogen to chill Apple's M4 iPad Pro. This unconventional approach unlocked great single-core performance, surpassing even the M3 Max and M2 Ultra processors in Geekbench v6 benchmark tests. The setup involved cooling the M4 iPad Pro, equipped with a 3+6 core configuration, using a Kingpin Cooling T-Rex Rev 4 CPU LN2 pot filled with liquid nitrogen. This extreme cooling allowed the M4 processor to operate at an astonishing 4.41 GHz during the benchmark run, resulting in a staggering single-core score of 4,001 points. This score represents a 28% increase over the M3 Max found in the 16-inch MacBook Pro and an impressive 44% improvement over the M2 Ultra powering the Mac Studio.
Notably, the M4's single-core performance is capable of reaching scores in the 3,000s. With liquid nitrogen cooling, it suprases the 4,000-point mark, making this achievement all the more remarkable. While the M4's multi-core performance did not match the lofty expectations set by its single-core power, it still managed to achieve a score of 13,595 points, outperforming both the M3 Max and M2 Ultra, which scored 20,957 and 21,330 points, respectively. This was done on the 3+6 core configuration with three P-cores and six E-cores, which is not the top-end M4 configuration. This shows that with adequate cooling, like MacBooks, the upcoming M4 Pro and M4 Max chips could achieve much higher performance than their predecessors.
Notably, the M4's single-core performance is capable of reaching scores in the 3,000s. With liquid nitrogen cooling, it suprases the 4,000-point mark, making this achievement all the more remarkable. While the M4's multi-core performance did not match the lofty expectations set by its single-core power, it still managed to achieve a score of 13,595 points, outperforming both the M3 Max and M2 Ultra, which scored 20,957 and 21,330 points, respectively. This was done on the 3+6 core configuration with three P-cores and six E-cores, which is not the top-end M4 configuration. This shows that with adequate cooling, like MacBooks, the upcoming M4 Pro and M4 Max chips could achieve much higher performance than their predecessors.