News Posts matching #RISC-V

Return to Keyword Browsing

Russian Baikal-S Processor With 48 Arm-Based Cores Boots Up, Uses RISC-V Coprocessor for Safe Boot and Management

In recent years, government institutions have been funding the development of home-grown hardware that will power the government infrastructure. This trend was born out of a desire to design chips with no back doors implemented so that no foreign body could monitor the government's processes. Today, Russian company Baikal Electronics managed to boot up the Baikal-S processor with 48 cores based on Arm Instruction Set Architecture (ISA). The processor codenamed BE-S1000 manages to operate 48 cores at a 2.0 GHz base frequency, with a maximum boost of 2.5 GHz clock speed. All of that is achieved at the TDP of 120 Watts, making this design very efficient.

When it comes to some server configurations, the Baikal-S processor run in up to four sockets in a server board. It offers a home-grown RISC-V processor for safe boot and management, so the entire SoC is controlled by a custom design. Baikal Electronics provided some benchmark numbers, which you can see in the slides below. They cover SPEC2006 CPU Integer, Coremark, Whetstone, 7Zip, and HPLinkpack performance. Additionally, the company claims that Baikal-S is in line with Intel Xeon Gold 6148 Skylake design and AMD EPYC 7351 CPU based on Zen1 core. Compared to Huawei's Kunpeng 920, the Baikal-S design provides 0.86x performance.

Imagination launches RISC-V CPU family

Imagination Technologies announces Catapult, a RISC-V CPU product line designed from the ground-up for next-generation heterogeneous compute needs. Based on RISC-V, the open-source CPU architecture, which is transforming processor design, Imagination's Catapult CPUs can be configured for performance, efficiency, or balanced profiles, making them suitable for a wide range of markets.

Leveraging Imagination's 20 years of experience in delivering complex IP solutions, the new CPUs are supported by the rapidly expanding open-standard RISC-V ecosystem, which continues to shake up the embedded CPU industry by offering greater choice. Imagination's entry will enable the rapidly expanding RISC-V ecosystem to add a greater range of product offerings, especially for heterogeneous systems. Now customers have an even wider choice of solutions built on the open RISC-V ISA, avoiding lock-in with proprietary architectures.

SiFive Raises RISC-V performance bar with New Best-in-Class SiFive Performance P650 Processor

SiFive, Inc., the founder and leader of RISC-V computing, today announced the availability of the SiFive Performance P650 processor, the new range-topping member of the SiFive Performance family, which is expected to be the fastest licensable RISC-V processor IP core in the market. The SiFive Performance P650 will enable RISC-V designs for performance-demanding application processor markets from data center to edge, automotive, compute, mobile and more.

"SiFive's mission is to answer the semiconductor industry's call for more processor IP choices. SiFive is singularly focused on bringing innovative processor technology based on the RISC-V architecture to market," said Dr. Yunsup Lee, co-founder and CTO, SiFive. "Since the announcement of the Performance Series of RISC-V cores earlier this year, SiFive has continued to push the limits of what was previously possible with RISC-V. The SiFive Performance P650 processor IP represents our commitment towards relentless execution, delivering significant performance improvements in record time. This announcement is the next step towards our long-term vision of bringing RISC-V processors to all performance-hungry applications."

Intel's Attempts at Acquiring SiFive Fail to Deliver, Company Now Seeks IPO

Back in June, SiFive, a company focusing on providing RISC-V-based IP solutions, received an offer for a takeover from Intel. With a value of over two billion dollars, the company's request was on the table to accept. However, according to the latest report from Bloomberg, SiFive declined an offer and aimed to get an initial public offering or get acquired by an even larger vendor. What made the company reject, you might question?

Well, according to sources familiar with the deal, Intel's offer of two billion USD was not enough, and it interrupted the company's ideologies of operation. SiFive management didn't like how Intel would integrate the company in its roadmaps and decided to stay independent. For now, the company is looking to start an initial public offering or get acquired an even larger company that would respect its vision and guidelines, unlike Intel's offer.

Alibaba Goes Anti-x86: Open-Source RISC-V and 128-Core Arm Server Processors on the Horizon

With the x86 architecture, large hyperscale cloud providers have been experiencing all sorts of troubles, from high power consumption to the high pricing structure of these processors. Companies like Amazon Web Services (AWS) build their processors based on 3rd party instruction set architecture designs. Today, Alibaba, the Chinese giant, has announced the launch of two processors made in-house to serve everything from edge to central server processing. First in line is the RISC-V-based Xuantie series of processors, which can run anything from AliOS, FreeRTOS, RT-Thread, Linux, Android, etc., to other operating systems as well. These processors are open-source, capable of modest processing capabilities, and designed as IPs that anyone can use. You can check them out on T-Head GitHub repositories here.

The other thing that Alibaba announced is the development of a 128-core custom processor based on the Arm architecture. Called Yitian 710 server SoC, TSMC manufactures it on the company on 5 nm semiconductor node. So far, Alibaba didn't reveal any details about the SoC and what Arm cores are used. However, this signifies that the company seeks technology independence from outside sources and wants to take it all in-house. With custom RISC-V processors for lower-power tasks and custom Arm server CPUs, the whole infrastructure is covered. It is just a matter of time before Alibaba starts to replace x86 makers in full. However, given the significant number of chips that the company needs, it may not happen at any sooner date.

European Processor Initiative EPAC 1.0 RISC-V Test Chip Samples Delivered

The European Processor Initiative (EPI) https://www.european-processor-initiative.eu/, a project with 28 partners from 10 European countries, with the goal of making EU achieve independence in HPC chip technologies and HPC infrastructure, is proud to announce that EPAC 1.0 RISC-V Test Chip samples were delivered to EPI and initial tests of their operation were successful.

One key segment of EPI activities is to develop and demonstrate fully European-grown processor IPs based on the RISC-V Instruction Set Architecture, providing power-efficient and high-throughput accelerator cores named EPAC (European Processor Accelerators).

Apple Exploring RISC-V Machine Architecture for Future Silicon

Having only recently transitioned its Mac ecosystem to the Arm machine architecture, away from x86-64, Apple is finding itself in a position where it must prepare for an eventuality where NVIDIA withholds cutting-edge development of the Arm IP to itself. The democratized nature of the current Arm IP enables licensees like Apple to stay on the cutting-edge; since its holding company SoftBank does not make chips of its own. Apple is turning its attention to open-source machine architectures such as RISC-V, and reported started foundational work on the architecture that could eventually result in its own high-performance SoCs powering the iPhone, other iOS devices, wearables, and future generations of the Mac.

Tachyum Boots Linux on Prodigy FPGA

Tachyum Inc. today announced that it has successfully executed the Linux boot process on the field-programmable gate array (FPGA) prototype of its Prodigy Universal Processor, in 2 months after taking delivery of the IO motherboard from manufacturing. This achievement proves the stability of the Prodigy emulation system and allows the company to move forward with additional testing before advancing to tape out.

Tachyum engineers were able to perform the Linux boot, execute a short user-mode program and shutdown the system on the fully functional FPGA emulation system. Not only does this successful test prove that the basic processor is stable, but interrupts, exceptions, timing, and system-mode transitions are, as well. This is a key milestone, which dramatically reduces risk, as booting and running large and complex pieces of software like Linux reliably on the Tachyum FPGA processor prototype shows that verification and hardware stability are past the most difficult turning point, and it is now obvious that verification and testing should successfully complete in the coming months. Designers are now shifting their attention to debug and verification processes, running hundreds of trillions of test cycles over the next few months, and running large scale user mode applications with compatibility testing to get the processor to production quality.

SiFive Performance P550 Core Sets New Standard as Highest Performance RISC-V Processor IP

SiFive, Inc., the industry leader in RISC-V processors and silicon solutions, today announced launched the new SiFive Performance family of processors. The SiFive Performance family debuts with two new processor cores, the P270, SiFive's first Linux capable processor with full support for the RISC-V vector extension v1.0 rc, and the SiFive Performance P550 core, SiFive's highest performance processor to date. The new SiFive Performance P550 delivers a SPECInt 2006 score of 8.65/GHz, making it the highest performance RISC-V processor available today, and comparable to existing proprietary solutions in the application processor space.

"SiFive Performance is a significant milestone in our commitment to deliver a complete, scalable portfolio of RISC-V cores to customers in all markets who are at the vanguard of SOC design and are dissatisfied with the status quo," said Dr. Yunsup Lee, Co-Founder and CTO of SiFive. "These two new products cover new performance points and a wide range of application areas, from efficient vector processors that easily displace yesterday's SIMD architectures, to the bleeding edge that the P550 represents. SiFive is proud to set the standard for RISC-V processing and is ready to deliver these products to customers today."

SiFive Receives $2 Billion Takeover Offer from Intel

SiFive, one of the hottest new semiconductor start-ups specializing in performance RISC-V processors, has received an offer for acquisition from Intel, for USD $2 billion, according to a Bloomberg report, citing sources close to the deal. SiFive was last valued at $500 million in 2020, when it was raising funds. SiFive is potentially benefiting from NVIDIA's ongoing acquisition of Arm, as the company has the ingredients to whip up high-performance processors based on the open-standard RISC-V machine architecture. Both SiFive and Intel declined to comment on the Bloomberg story.

Tachyum Receives Prodigy FPGA DDR-IO Motherboard to Create Full System Emulation

Tachyum Inc. today announced that it has taken delivery of an IO motherboard for its Prodigy Universal Processor hardware emulator from manufacturing. This provides the company with a complete system prototype integrating CPU, memory, PCI Express, networking and BMC management subsystems when connected to the previously announced field-programmable gate array (FPGA) emulation system board.

The Tachyum Prodigy FPGA DDR-IO Board connects to the Prodigy FPGA CPU Board to provide memory and IO connectivity for the FPGA-based CPU tiles. The fully functional Prodigy emulation system is now ready for further build out, including Linux boot and incorporation of additional test chips. It is available to customers to perform early testing and software development prior to a full four-socket reference design motherboard, which is expected to be available Q4 2021.

HiSilicon Develops RISC-V Processor to Move Away from Arm Restrictions

Huawei's HiSilicon subsidiary, which specialized in the design and development of semiconductor devices like processors, has made a big announcement today. A while back, the US government has blacklisted Huawei from using any US-made technology. This has rendered HiSilicon's efforts of building processors based on Arm architecture (ISA) practically useless, as the US sanctions applied to that as well. So, the company had to turn to alternative technologies. Today, HiSilicon has announced the new HiSilicon Hi3861 development board, based on RISC-V architecture. This represents an important step to Huawei's silicon independence, as RISC-V is a free and open-source ISA designed for all kinds of workloads.

While the HiSilicon Hi3861 development board features a low-power Hi3861 chip, it is the company's first attempt at building a RISC-V design. It features a "high-performance 32-bit microprocessor with a maximum operating frequency of 160 MHz". While this may sound very pale in comparison to the traditional HiSilicon products, this chip is used for IoT applications, which don't require much processing power. For tasks that need better processing, HiSilicon will surely develop more powerful designs. This just represents an important starting point, where Huawei's HiSilicon moves away from Arm ISA, and steps into another ISA design and development. This time, with RISC-V, the US government has no control over the ISA, as it is free to use by anyone who pleases, with added benefits of no licensing costs. It is interesting to see where this will lead HiSilicon and what products the company plans to release on the new ISA.

Tenstorrent Selects SiFive Intelligence X280 for Next-Generation AI Processors

SiFive, Inc., the industry leader in RISC-V processors and silicon solutions, today announced that Tenstorrent, an AI semiconductor and software start-up developing next-generation computers, will license the new SiFive Intelligence X280 processor in its AI training and inference processor. SiFive will deliver more details of its SiFive Intelligence initiative including the SiFive Intelligence X280 processor at the Linley Spring Processor Conference on April 23rd.

Tenstorrent's novel approach to inference and training effectively and efficiently accommodates the exponential growth in the size of machine learning models while offering best-in-class performance.

Tachyum Prodigy Software Emulation Systems Now Available for Pre-Order

Tachyum Inc. today announced that it is signing early adopter customers for the software emulation system for its Prodigy Universal Processor, customers may begin the process of native software development (i.e. using Prodigy Instruction Set Architecture) and porting applications to run on Prodigy. Prodigy software emulation systems will be available at the end of January 2021.

Customers and partners can use Prodigy's software emulation for evaluation, development and debug, and with it, they can begin to transition existing applications that demand high performance and low power to run optimally on Prodigy processors. Pre-built systems include a Prodigy emulator, native Linux, toolchains, compilers, user mode applications, x86, ARM and RISC-V emulators. Software updates will be issued as needed.

Seagate Designs RISC-V Cores to Power Data Mobility and Trustworthiness

Seagate Technology plc announced that it has designed two processors based on the open RISC-V instruction set architecture (ISA). One of the open standards-enabled cores is designed for high performance and the other is area-optimized. The high-performance processor has already been built with RISC-V-enabled silicon and demonstrated as functional in hard disk drives (HDDs). The area-optimized core has been designed and is in the process of being built.

Because both processors offer RISC-V security features, the benefits add up to more robust edge-to-cloud data trustworthiness, security, and mobility—all essential in the era when so much data is on the move. The announcement, made today at the virtual RISC-V Summit 2020, is the first public report on the results of Seagate's several years of collaboration with RISC-V International.

RISC-V Processor Achieves 5 GHz Frequency at Just 1 Watt of Power

Researchers at the University of California, Berkeley in 2010 have started an interesting project. They created a goal to develop a new RISC-like Instruction Set Architecture that is simple and efficient while being open-source and royalty-free. Born out of that research was RISC-V ISA, the fifth iteration of Reduced Instruction Set Computing (RISC) ideology. Over the years, the RISC-V ISA has become more common, and today, many companies are using it to design their processors and release new designs every day. One of those companies is Micro Magic Inc., a provider of silicon design tools, IP, and design services. The company has developed a RISC-V processor that is rather interesting.

Apart from the RISC-V ISA, the processor has an interesting feature. It runs at the whopping 5 GHz frequency, a clock speed unseen on the RISC-V chips before, at the power consumption of a mere one (yes that is 1) Watt. The chip ran at just 1.1 Volts, which means that a very low current needs to be supplied to the chip so it can achieve the 5 GHz mark. If you are wondering about performance, well the numbers show that at 5 GHz, the CPU can produce a score of 13000 CoreMarks. However, that is not the company's highest-performance RISC-V core. In yesterday's PR, Micro Magic published that their top-end design can achieve 110000 CoreMarks/Watt, so we are waiting to hear more details about it.

RISC-V Comes to PC: SiFive Introduces HiFive Unmatched Development Board

RISC-V architecture is a relatively new Instruction Set Architecture (ISA) developed at the University of California Berkeley. Starting as a "short, three-month project" the RISC-V ISA is a fifth generation of the Reduced Instruction Set Computing (RISC) ideology. A company working on this technology and helping to grow the ecosystem is SiFive. Today, they announced a big step forward for the ecosystem that will enable developers to make and optimize even more software for this architecture and platform. Called the HiFive Unmatched, the development board represents the first entry of RISC-V ISA to the world of personal computing, with its Mini-ITX form factor and PC-like connectors of power supply and I/O.

The board is home to SiFive's FU740 SoC, a five-core heterogeneous, coherent processor with four SiFive U74 cores, and one SiFive S7 core. This SoC is capable of smooth Linux OS operation, giving the developers a good platform to do their optimizations for. There is 8 GB of onboard DDR4 RAM (unknown frequencies and timing), a MicroSD card slot, and one PCIe 3.0 x4 M.2 slot for system storage. To connect the board to the outside world, you get one Gigabit Ethernet port. For user I/O there are four USB 3.2 Gen 1 Type-A ports (1 Charging port) and one MicroUSB Console port. To power the board, you need a proper power supply with a 24-pin power connector. If you plan to build a PC based on the Unmatched board, you would need a standard ITX case, as it comes in the standard Mini-ITX (170x170 mm) form factor. For more information, please check out SiFive's website.

SiFive To Introduce New RISC-V Processor Architecture and RISC-V PC at Linley Fall Virtual Processor Conference

SiFive, Inc., the leading provider of commercial RISC-V processor IP and silicon solutions, today announced that Dr. Yunsup Lee, CTO of SiFive, and Dr. Krste Asanovic, Chief Architect of SiFive, will present at the technology industry's premier processor conference, the Linley Fall Virtual Processor Conference. The conference will be held on October 20th - 22nd and 27th - 29th, 2020 and will feature high-quality technical content from leading semiconductor companies worldwide.

"Industry demand for AI performance has skyrocketed over the last few years driven by rapid adoption from the data center to the edge. This year's Linley Fall Processor Conference will feature our biggest program yet and will introduce a host of new technology disclosures and product announcements of innovative processor architectures and IP technologies," said Linley Gwennap, principal analyst and conference chairperson. "In spite of the challenges posed by the pandemic, development of these technologies continues to accelerate and we're excited to be sharing these presentations with a global audience via our live-streamed format."

Western Digital Sets a New Standard in Data Protection with Ground-Breaking ArmorLock Security Platform

Underscoring its mission to enable the world to solve its biggest data challenges by building a data infrastructure with next-gen security, Western Digital (NASDAQ: WDC) today introduced the ArmorLock Security Platform. A data encryption platform that rethinks how data security should be done, the ArmorLock Security Platform was created to help with the diverse security demands of data-centric and content-critical storage use cases in industries as varied as finance, government, healthcare, IT enterprise, legal, and media and entertainment. As data security concerns continue to rise in visibility, Western Digital plans to apply the platform across a range of storage solutions.

The first product to leverage this advanced technology, the new G-Technology ArmorLock encrypted NVMe SSD, is designed to deliver an easy-to-use, high-performance, high-grade security storage solution for creators in the media and entertainment industry. Facing the threat of hijacked media files and leaked films, studios, agencies, and especially investors are demanding a better way to protect critical content. While much of the industry's focus has been on cloud security, data often remains vulnerable on the portable storage devices holding critical commercial content.

SiFive Secures $61 Million in Series E Funding Led by SK Hynix

SiFive, Inc., the leading provider of commercial RISC-V processor IP and silicon solutions, today announced it raised $61 million in a Series E round led by SK hynix, joined by new investor Prosperity7 Ventures, with additional funding from existing investors, Sutter Hill Ventures, Western Digital Capital, Qualcomm Ventures, Intel Capital, Osage University Partners, and Spark Capital.

"Global demand for storage and memory in the data center is increasing as AI-powered business intelligence and data processing growth continues", said Youjong Kang, VP of Growth Strategy, SK hynix. "SiFive is well-positioned to grow with opportunities created from data center, enterprise, storage and networking requirements for workload-focused processor IP."

Tachyum Demo Shows Prodigy Will Be Faster Than NVIDIA and Intel Chips

Tachyum Inc. today announced that it has successfully completed a demonstration showing its Prodigy Universal Processor running faster than any other processor, HPC or AI chips, including ones from NVIDIA and Intel. This is the latest of many recent milestones achieved by Tachyum as the company continues its march towards Prodigy's product release next year.

Tachyum demonstrated how its computational operation and the speed of its product design, using an industry-standard Verilog simulation of the actual Prodigy post layout hardware, is the superior solution to current competitive offerings. Not only does Prodigy execute instructions at very high speeds, but Tachyum now has an infrastructure implemented for automatically checking correct results from the Verilog RTL. These automated tests check Verilog output for correctness compared to Tachyum's C-model, which was used to measure performance, and is now the 'Golden Model' for the Verilog hardware simulation to ensure it produces identical, step-by-step results.

Tachyum Shows Prodigy Running Existing x86, ARM, and RISC-V Software

Tachyum Inc. announced that its Prodigy Universal Processor has successfully completed software emulation testing across x86, ARM and RISC-V binary environments. This important milestone demonstrates that Prodigy will enable customers to run their legacy applications transparently at launch with better performance than any contemporary or future ARM or RISC-V processors. Coupled with hyperscale data center workhorse programs such as Hadoop, Apache and more, which Tachyum is recompiling to Prodigy native code, this capability will ensure that Prodigy customers can run a broad spectrum of applications, right out of the box. Tachyum customers consistently indicate that they would run 100% native applications within 9-18 months of transitioning to the Tachyum platform to exceed performance of the fastest Xeon processor. The emulation is to smoothly transition to native software for Tachyum Prodigy.

Hot Chips 2020 Program Announced

Today the Hot Chips program committee officially announced the August conference line-up, posted to hotchips.org. For this first-ever live-streamed Hot Chips Symposium, the program is better than ever!

In a session on deep learning training for data centers, we have a mix of talks from the internet giant Google showcasing their TPUv2 and TPUv3, and a talk from startup Cerebras on their 2nd gen wafer-scale AI solution, as well as ETH Zurich's 4096-core RISC-V based AI chip. And in deep learning inference, we have talks from several of China's biggest AI infrastructure companies: Baidu, Alibaba, and SenseTime. We also have some new startups that will showcase their interesting solutions—LightMatter talking about its optical computing solution, and TensTorrent giving a first-look at its new architecture for AI.
Hot Chips

Europe Readies its First Prototype of Custom HPC Processor

European Processor Initiative (EPI) is a Europe's project to kickstart a homegrown development of custom processors tailored towards different usage models that the European Union might need. The first task of EPI is to create a custom processor for high-performance computing applications like machine learning, and the chip prototypes are already on their way. The EPI chairman of the board Jean-Marc Denis recently spoke to the Next Platform and confirmed some information regarding the processor design goals and the timeframe of launch.

Supposed to be manufactured on TSMC's 6 nm EUV (TSMC N6 EUV) technology, the EPI processor will tape-out at the end of 2020 or the beginning of 2021, and it is going to be heterogeneous. That means that on its 2.5D die, many different IPs will be present. The processor will use a custom ARM CPU, based on a "Zeus" iteration of Neoverese server core, meant for general-purpose computation tasks like running the OS. When it comes to the special-purpose chips, EPI will incorporate a chip named Titan - a RISC-V based processor that uses vector and tensor processing units to compute AI tasks. The Titan will use every new standard for AI processing, including FP32, FP64, INT8, and bfloat16. The system will use HBM memory allocated to the Titan processor, have DDR5 links for the CPU, and feature PCIe 5.0 for the inner connection.

NVIDIA Leads the Edge AI Chipset Market but Competition is Intensifying: ABI Research

Diversity is the name of the game when it comes to the edge Artificial Intelligence (AI) chipset industry. In 2019, the AI industry is witnessing the continual migration of AI workloads, particularly AI inference, to edge devices, including on-premise servers, gateways, and end-devices and sensors. Based on the AI development in 17 vertical markets, ABI Research, a global tech market advisory firm, estimates that the edge AI chipset market will grow from US $2.6 billion in 2019 to US $7.6 billion by 2024, with no vendor commanding more than 40% of the market.

The frontrunner of this market is NVIDIA, with a 39% revenue share in the first half of 2019. The GPU vendor has a strong presence in key AI verticals that are currently leading in AI deployments, such as automotive, camera systems, robotics, and smart manufacturing. "In the face of different use cases, NVIDIA chooses to release GPU chipsets with different computational and power budgets. In combination with its large developer ecosystem and partnerships with academic and research institutions, the chipset vendor has developed a strong foothold in the edge AI industry," said Lian Jye Su, Principal Analyst at ABI Research.

NVIDIA is facing stiff competition from Intel with its comprehensive chipset portfolio, from Xeon CPU to Mobileye and Movidius Myriad. At the same time, FPGA vendors, such as Xilinx, QuickLogic, and Lattice Semiconductor, are creating compelling solutions for industrial AI applications. One missing vertical from NVIDIA's wide footprint is consumer electronics, specifically smartphones. In recent years, AI processing in smartphones has been driven by smartphone chipset manufacturers and smartphone vendors, such as Qualcomm, Huawei, and Apple. In smart home applications, MediaTek and Amlogic are making their presence known through the widespread adoption of voice control front ends and smart appliances.
Return to Keyword Browsing
Nov 21st, 2024 07:17 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts