Quantum Machines Anticipates Collaborative Breakthroughs at NVIDIA's New Research Center
Quantum Machines (QM), a leading provider of advanced quantum control solutions, today announced its intention to work with NVIDIA at its newly established NVIDIA Accelerated Quantum Research Center (NVAQC), unveiled at the GTC global AI conference. The Boston-based center aims to advance quantum computing research with accelerated computing, including integrating quantum processors with AI- supercomputing to overcome significant challenges in the quantum computing space. As quantum computing rapidly evolves, the integration of quantum processors with powerful AI supercomputers becomes increasingly essential. These accelerated quantum supercomputers are pivotal for advancing quantum error correction, device control, and algorithm development.
Quantum Machines joins other quantum computing pioneers, including Quantinuum and QuEra, along with academic partners from Harvard and MIT, in working with NVIDIA at the NVAQC to develop pioneering research. Quantum Machines will work with NVIDIA to integrate its NVIDIA GB200 Grace Blackwell Superchips with QM's advanced quantum control technologies, including the OPX1000. This integration will facilitate rapid, high-bandwidth communication between quantum processors and classical supercomputers. QM and NVIDIA thereby lay the essential foundations for quantum error correction and robust quantum algorithm execution. By reducing latency and enhancing processing efficiency, QM and NVIDIA solutions will significantly accelerate practical applications of quantum computing.
Quantum Machines joins other quantum computing pioneers, including Quantinuum and QuEra, along with academic partners from Harvard and MIT, in working with NVIDIA at the NVAQC to develop pioneering research. Quantum Machines will work with NVIDIA to integrate its NVIDIA GB200 Grace Blackwell Superchips with QM's advanced quantum control technologies, including the OPX1000. This integration will facilitate rapid, high-bandwidth communication between quantum processors and classical supercomputers. QM and NVIDIA thereby lay the essential foundations for quantum error correction and robust quantum algorithm execution. By reducing latency and enhancing processing efficiency, QM and NVIDIA solutions will significantly accelerate practical applications of quantum computing.